
Multi-agent Virtual Machine Management Using
the Lightweight Coordination Calculus

Paul Anderson, Shahriar Bijani, and Herry Herry

School of Informatics, University of Edinburgh,
10 Crichton Street, Edinburgh, EH8 9AB, UK

{dcspaul,s.bijani}@ed.ac.uk

h.herry@sms.ed.ac.uk

Abstract. LCC is a Lightweight Coordination Calculus which can be
used to provide an executable, declarative specification of an agent in-
teraction model. In this paper, we describe an LCC-based system for
specifying the migration behaviour of virtual machines within, and be-
tween datacentres. We present some example models, showing how they
can be used to implement different policies for the machine allocation
and migration. We then show how LCC models can be used to man-
age the workflows that involve creation and deletion of virtual machines
when migrating services between different datacentres.

Keywords: autonomic computing, multi-agent systems, virtual machines,
OpenKnowledge, Lightweight Coordination Calculus

1 Introduction

Virtualisation technology has recently transformed the availability and manage-
ment of compute resources. Each physical machine (PM) in a datacentre is capa-
ble of hosting several virtual machines (VMs). From the user’s point of view, a
virtual machine is functionally equivalent to a dedicated physical machine; how-
ever, new VMs can be provisioned and decommissioned rapidly without changes
to the hardware. VMs can also be migrated between physical machines without
noticeable interruption to the running applications. This allows dynamic load
balancing of the datacentre, and high availability through the migration of VMs
off failed machines. The resulting virtual infrastructure provides the basis for
cloud computing.

Managing the placement and migration of VMs in a datacentre is a significant
challenge; existing commercial tools are typically based on a central management
service which collates performance information from all of the VMs. If the current
allocation is unsatisfactory (according to some policies), then the management
service will compute a new VM allocation and direct agents on the physical
machines to perform the necessary migrations.

As the size and complexity of datacentres increases, this centralised manage-
ment model appears less attractive; even with a high-availability management

2 LNCS: Transactions on Computational Collective Intelligence

service, there is possibility of failure and loading problems. If we would like to ex-
tend the domain of the virtual infrastructure to encompass multiple datacentres,
managed by different providers, then the central model is no longer appropriate;
in this federated “cloud” scenario, there may no longer be a single organisation
with ultimate authority over all of the infrastructure.

This motivates us to propose a less centralised solution where agents located
on the physical machines negotiate to transfer VMs between themselves, without
reference to any centralised authority. This seems particularly appropriate for
many situations where a globally optimal solution is not necessary or feasible;
for example, if a machine is overloaded, it is often sufficient to find some other
machine which will take some of the load. Likewise, an underloaded machine
simply needs to take on additional VMs to improve its utilisation; there is no
need for any global knowledge or central control.

However, moving virtual machines between datacentres is also more difficult:
in general it is not possible to perform a live migration, and a new virtual machine
must be started in the target datacentre, and the services transferred, before
stopping the original virtual machine. The new machine will also have a different
IP address, and possibly other differences, which mean that the migration may
not be transparent to clients of the service. In this case, the clients will need
to be notified about the change, and a comparatively complex workflow may be
needed to avoid any break in the service. Once again, there may be no obvious
central authority to sequence this workflow, and this motivates an agent-based
approach to the workflow execution.

In this paper, we present a solution to the above problem where agents fol-
low interaction models (IMs) described in the lightweight coordination calculus
(LCC). The agents use the OpenKnowledge framework to locate appropriate in-
teraction models and to identify suitable peers. These interaction models specify
the agent behaviour, and allow them to make autonomous decisions; for example,
the choice of VM to accept could be based on local capabilities, the properties
of the VM being offered, the financial relationship with the donor, etc. Once
a transfer has been agreed, the participating machines will execute interaction
models which implement a workflow to effect the transfer. This may be a sim-
ple live migration which is transparent to any clients of the service, or it may
be a more complex workflow which involves notifying clients, and stopping and
starting virtual machines in different datacentres.

One important consequence of this approach is that we can very easily change
the global policy of an entire infrastructure by introducing new interaction mod-
els. For example, a particular model may encourage the physical machines to
distribute the load evenly among themselves; this makes a lightly-loaded in-
frastructure very agile and able to accept new VMs very quickly. Alternately,
a different interaction model may encourage the machines to prefer a full, or
empty, loading as opposed to a partial one. Some of the machines would then
be able to dispose of all their VMs, allowing them to be turned off and hence
saving power.

Multi-agent VM Management using LCC 3

Section 2 provides some background on LCC and the OpenKnowledge frame-
work, and section 3 presents LCC interaction models for various scenarios in-
volving virtual machine allocation. These interaction models, together with a live
prototype which implements them on a real datacentre, are described in more
detail in [1]. Section 4 presents new work which describes an extension of the
interaction models to manage the workflows which are necessary to deploy the
allocations when services are migrated between datacentres and live migration
is not possible. Section 5 covers some of the consequences and issues raised by
this approach, and section 6 provides a brief discussion of some related work on
VM management, including the state-of-the-art in commercial tools, as well as
more experimental, agent-based approaches.

2 LCC and OpenKnowledge

A computational agent - such as one responsible for one of our physical machines
- must be capable of acting autonomously, but it will also need to communicate
with other agents in order to achieve its goals. In a multi-agent system (MAS),
the agents often observe conventions which allow them to co-operate. These are
analogous to the social norms in human interactions, and may be more or less
formal – an oft-cited example is the rules which govern the bidding process in
an auction. In our application, agents must be able to compare the respective
resource utilisation of their hosts, and reach an agreement about the transfer of
a virtual machine. Typically, the social norms in a MAS will be defined using an
explicit protocol. The lightweight coordination calculus (LCC) is a declarative,
executable specification language for such a protocol.

2.1 LCC

LCC [3] is based on a process algebra which supports formal verification of
the interaction models. In contrast with traditional specifications for electronic
institutions, there is no requirement to predefine a “global” script which all
agents follow - the protocols can be exchanged and evolved dynamically during
the conversation. LCC is used to specify “if” and “when” agents communicate; it
does not define how the communication takes place1, and it does not define how
the agents rationalise internally. There are several different implementations of
the LCC specification, including OpenKnowledge (see below), Li2, UnrealLCC3

and Okeilidh4.
There is insufficient space here to describe the LCC language in detail; the

OpenKnowledge website contains a good introduction5, and there are also some

1 The inter-agent communication mechanism is defined by the implementation.
2 http://sourceforge.net/projects/lij
3 http://sourceforge.net/projects/unreallcc
4 http://groups.inf.ed.ac.uk/OK/drupal/okeilidh
5 http://groups.inf.ed.ac.uk/OK/index.php?page=tutorial.txt

http://sourceforge.net/projects/lij
http://sourceforge.net/projects/unreallcc
http://groups.inf.ed.ac.uk/OK/drupal/okeilidh
http://groups.inf.ed.ac.uk/OK/index.php?page=tutorial.txt

4 LNCS: Transactions on Computational Collective Intelligence

video tutorials6. The following brief summary should be sufficient to follow the
annotated example presented in the next section:

Each IM includes one or more clauses, each of which defines a role. Each
role definition specifies all of the information needed to perform that role. The
definition of a role starts with: a(roleName, PeerID). The principal operators
are outgoing message (=>), incoming message (<=), conditional (<-), sequence
(then) and committed choice (or). Constants start with lower case characters
and variables (which are local to a clause) start with upper case characters.
LCC terms are similar to Prolog terms, including support for list expressions.
Matching of input/output messages is achieved by structure matching, as in
Prolog.

The right-hand side of a conditional statement is a constraint. Constraints
provide the interface between the IM and the internal state of the agent. These
would typically be implemented as a Java component which may be private
to the peer, or a shared component registered with a discovery service. One
advantage of the separation of interaction models from the constraints is that
the interaction models can easily be shared.

2.2 OpenKnowledge

OpenKnowledge (OK7)[4,5] provides an implementation of LCC, together with
some additional functionality, including a distributed discovery service (2.2) and
an ontology matching service (2.2). Having decided to participate in a particular
interaction, peers register their desired roles with the discovery service. This
identifies a suitable set of peers to fulfil each role in the interaction. The peers
are then notified and the interaction proceeds without further involvement of
the discovery service8.

The Discovery Service: In addition to locating peers with matching roles,
the OK discovery service provides facilities for discovering and distributing both
interaction models and components (OKCs). This means that a physical machine
(in our application) need only register its willingness to participate, and the
behaviour will then be defined by the IMs and OKCs which are retrieved from
the discovery service. Each peer has a choice of interaction models to suit various
different scenarios, but once it has subscribed to an IM, all of the peers in that
interaction will be following the same “script”.

The OK implementation is a scalable, open, efficient and robust service based
on top of the FreePastry DHT implementation. This relies on keyword match-
ing and is based-on a completely decentralised storing mechanism that requires

6 http://stadium.open.ac.uk/stadia/preview.php?whichevent=984&s=29
7 http://groups.inf.ed.ac.uk/OK/
8 In practice, the OK implementation elects a random peer to be a coordinator for the

interaction, and the coordinator executes the IM, only making calls to other peers
when it is necessary to evaluate a constraint. However, this is largely an optimisation
decision and different implementations take different approaches.

http://stadium.open.ac.uk/stadia/preview.php?whichevent=984&s=29
http://groups.inf.ed.ac.uk/OK/

Multi-agent VM Management using LCC 5

O(log(N)) messages to store and search for N peers (see [6] for a discussion
of the implementation). In a large scale evaluation, the OK discovery service
significantly outperformed the two reference approaches [7].

Ontology Matching: A major strength of the OK system is that there is
no need for a global agreement on interaction protocols. Any group of peers
can subscribe to an IM which may be publicly available, or shared between a
restricted group using some private mechanism. Likewise, there is no need for
a global agreement on vocabulary for the OKCs or roles – there only needs
to be agreement between those peers participating in a particular interaction,
and only on those terms which appear in that interaction. Rather than an a-
priori semantic agreement amongst component designers (which does not scale),
the OpenKnowledge implementation provides dynamic ontology coordination
at runtime. This uses various different mechanisms such as structural semantic
matching and statistical analysis.

PID1 PID2

readyToMigrate(Need)

isUnderloaded?

role: underloaded

isMigrationPossible?
migration(“ok”)

role: idle

role: idle

getPeerState

No

role: idle

getPeerState

getVmProfile

migration(PID1,PID2)

role: overloaded

isOverloaded?

role: idle

No

waitForMigration

Fig. 1. The interaction diagram of a live migration: overloaded peer PID1 and under-
loaded peer PID2 interact to balance their loads.

6 LNCS: Transactions on Computational Collective Intelligence

3 Interaction Models for VM Allocation

In this section we describe interaction models for managing the negotiation and
transfer of virtual machines between two physical machines in the same data-
centre (i.e. where live migration is possible). In the first instance we implement a
simple policy which aims to migrate VMs from busy peers to underloaded peers
in order to balance the load of each peer.

There are three states: idle, overloaded and underloaded. The idle state is the
initial and the goal state, in which the peer is balanced. Each peer is assumed to
be balanced at the beginning of the interaction. It may then change state based
on its load, or other factors9. Once a peer becomes unbalanced, it advertises its
status to the discovery service where it will be matched with potential candidates
for a transfer. The peer then negotiates with these candidates to find one which
is prepared to participate in the transfer. The conditions for acceptance of the
transfer, and the complexity of the negotiation are completely determined by the
interaction models of the individual peers – these may depend on, for example,
security policies or cost considerations as well as the capabilities of the physical
machine (processing power, network bandwidth, memory, etc.).

Figure 1 shows the interaction diagram of a very simply implementation10,
and figure 2 shows the corresponding LCC code. After an exchange of VMs,
both agents revert to the “idle” role. If they are balanced, no further action
takes place. Otherwise the unbalanced peers query the discovery service again
for more potential exchange partners.

The feasibility of this model for a real live system has been validated using
a prototype implementation based on a real physical cluster. This is described
in more detail in [1]. In addition, we used a simple simulator to investigate
the behaviour of more complex models with a larger number of machines and
more controlled loading. Figure 3 shows the results of this interaction model
applied to 50 simulated virtual machines running on 15 physical machines. In
this example, physical machines offload VMs if they have a load greater than
120% of the average, and they accept VMs if they have a load less than 80%.
Initially, the VMs are allocated randomly and the resulting load is uneven. The
system stabilises after a time with all the physical machines except one within
the desired range (the load on the remaining machine cannot be reduced because
all of the machines have a load greater than 80%). Further results and details of
the simulator are available in [8].

It may be the case that we would prefer to have the minimum number of
active peers, each using almost all of their resources (e.g. to minimise the cost).
A major advantage of the proposed approach is that such changes to the overall
policy can be easily implemented by deploying a new LCC specification which
implements a different interaction model. An implementation of this alternative

9 For example, a peer which needs to be taken down for maintenance needs simply
declare itself to be “overloaded” in order to dispose of all its virtual machines.

10 Single-corner rectangles, diamonds and dashed-arrows represent agent roles, con-
straints, and message passing between agents, respectively.

Multi-agent VM Management using LCC 7

1 // Definition of the “idle” role. Here, “idle” means the “balanced” state
2 a (i d l e , PeerID) : :
3 // the constraint to check the state of the peer
4 null <− getPeerState (Status) then
5 //select the next state based on the peer’s status
6 (
7 // if the peer is overloaded, change its role to “overloaded” and pass the status
8 a (over loaded (Status) , PeerID)<− isOverLoaded () then
9) or (

10 // if the peer is underloaded, change its role to “underloaded”
11 a (underloaded (Status) , PeerID) <− isUnderLoaded () then
12) or
13 // otherwise, remain in the idle role (recursion)
14 a (i d l e , PeerID)
15
16 // Definition of the “overloaded” role. “Need” is the amount of resources required
17 a (over loaded (Need) , PID1) : :
18 // send the “readyToMigrate(Need)” message to an underloaded peer
19 readyToMigrate (Need) => a (underloaded , PID2) then
20 // wait to receive “migration(ok)” from the underloaded peer
21 migrat ion (”ok”) <= a (underloaded , PID2) then
22 // live migration: send VMs from this peer to the underloaded peer
23 null <− migrat ion (PID1 , PID2) then
24 // change the peer’s role to “idle”
25 a (i d l e , PID1)
26
27 // Definition of the “underloaded” role: “Capacity” is the amount of free resources
28 a (underloaded (Capacity) , PID2) : :
29 // receive the “readyToMigrate(Need)” message from an overloaded peer
30 readyToMigrate (Need)<= a (over loaded , PID1) then
31 // send back the “migration(ok)” message, if the migration is possible, e.g.
32 // free ”Capacity” of this peer > ”Need” of the overloader peer
33 migrat ion (”ok”) => a (over loaded , PID1) <−

i s M i g r a t i o n P o s s i b l e (Capacity , Need) then
34 null <− waitForMigrat ion () then
35 // change the peer’s role to “idle”
36 a (i d l e , PID1)

Fig. 2. An LCC implementation of the interaction in figure 1.

8 LNCS: Transactions on Computational Collective Intelligence

0 5000 10000 15000 20000

Time (ms)

0

50

100

150

200
Ph

ys
ic

al
 M

ac
hi

ne
 Lo

ad
 A

ve
ra

ge
 (%

)

120% average load

80% average load

Fig. 3. A simulation showing the load on 15 physical machines as they interact to
balance a load of 50 virtual machines.

policy requires only a very small change to the LCC code, and is shown in full
in [1]11.

In general, the LCC will provide a clear description of the interaction, and the
constraints (usually implemented in Java) will be used to implement the interface
to the machine (hypervisor) itself – for example detecting the load status. The
policy itself may be defined either in the lcc, or within the constraints, or in
a combination of both. Since the Java components, and the LCC interaction
models can both be retrieved from the discovery service, the choice here depends
on which is most appropriate in each case.

4 Managing the Workflow

Having negotiated to transfer a VM within the same datacentre , live migration
is transparent and effected with a simple instruction to the hypervisor – the VMs
and their clients need not be aware that the transfer has occurred. However, if
the transfer is to occur between datacentres, then an offline-migration will be
required and there will be a number of changes which are not transparent to any
clients of the service – in particular, the IP address of the service will usually
change. To maintain service during such a transfer requires a careful sequence of
operations. Traditionally, this would be orchestrated by a centralised workflow
engine (see section 6). However, in a distributed, federated environment this
approach to the workflow suffers from exactly the same problems as a centralised

11 All of the LCC code for the models described in this paper is also available from
http://homepages.inf.ed.ac.uk/dcspaul/publications/ijicic.lcc

http://homepages.inf.ed.ac.uk/dcspaul/publications/ijicic.lcc

Multi-agent VM Management using LCC 9

approach to the allocation. In this section, we describe a typical pattern which
occurs during service transfer, and we show how LCC interaction models can be
used to sequence the necessary workflow without the need for a central controller.

In a very typical situation for a “cloud” environment, a particular service may
need to be migrated from one datacentre to another – perhaps this is necessary
because the internal capacity has been reached, or because of failures, or for
contractual reasons. If the service has active clients, then the new copy of the
service must be started, and all of the clients then transferred, before the original
service can be stopped. This sequence is illustrated in figures 4 to 7.

Physical Machine (PM1)

PID1 peer

Virtual Machine

SID1 peer

Service

libvirt

Client

CID peer OS

Datacenter 1

Current state

OS

Physical Machine (PM2)

PID2 peer

libvirt

Datacenter 2

OS

Fig. 4. The initial state of the system: A client is using a service which is running in
datacentre 1.

This workflow can be implemented in a fully distributed way using LCC. The
workflow is separated into a number of roles which are assigned to associated
agents, and the interaction between these agents will automatically execute the
workflow. Figure 8 shows the corresponding interaction diagram12.

This interaction operates as follows:

1. Initial State (figure 4)
– The initial state includes a client which is using a service provided by a

virtual server in datacentre 1. The client is managed by an agent (CID)
which is capable of redirecting the reference from one service to another.

– The service itself is managed by an agent (SID1), and is running on a
virtual machine (VM1). This is hosted on a physical machine managed
by agent (PID1).

12 The full LCC code is available at http://homepages.inf.ed.ac.uk/dcspaul/

publications/ijicic.lcc

http://homepages.inf.ed.ac.uk/dcspaul/publications/ijicic.lcc
http://homepages.inf.ed.ac.uk/dcspaul/publications/ijicic.lcc

10 LNCS: Transactions on Computational Collective Intelligence

Physical Machine (PM1)

PID1 peer

Virtual Machine

SID1 peer

Service

libvirt

Client

CID peer OS

Datacenter 1

Intermediate State 1

OS

Physical Machine (PM2)

PID2 peer

Virtual Machine

SID2 peer

Service

libvirt

Datacenter 2

OS

Fig. 5. The first stage of the workflow: A transfer of the service to datacentre 2 has
been agreed, and a new virtual machine is started in the target datacentre to host the
service.

Physical Machine (PM1)

PID1 peer

Virtual Machine

SID1 peer

Service

libvirt

Client

CID peer OS

Datacenter 1

Intermediate State 2

OS

Physical Machine (PM2)

PID2 peer

Virtual Machine

SID2 peer

Service

libvirt

Datacenter 2

OS

Fig. 6. The second stage of the workflow: The client is notified about the imminent
removal of the original service and it locates and reattaches to the new service.

Multi-agent VM Management using LCC 11

Physical Machine (PM1)

PID1 peer

libvirt

Client

CID peer OS

Datacenter 1

Final State

OS

Physical Machine (PM2)

PID2 peer

Virtual Machine

SID2 peer

Service

libvirt

Datacenter 2

OS

Fig. 7. When the client has left the original service, the service shuts down and the
virtual machine is deleted.

– A similar agent (PID2) is managing another physical machine (PM2) in
datacentre 2.

– The agents for all of the physical machines start in the “initial” role.
2. Stage 1 (figure 5)

– Now assume that PM2 has spare capacity and it therefore moves from
the “initial” role into the state “canAcceptLoad”. As in the example from
the previous section, this is now registered with the discovery service as
available to negotiate the acceptance of additional VMs.

– If PM1 now needs to be removed from service for some reason, PID1
must migrate all of its virtual machines to another physical machine. It
therefore moves into the “emigrant” role and is matched with PID2 by
the discovery service.

– Once the service transfer has been agreed, PID2 starts a new virtual
machine (VM2) to host the new service instance, and informs PID1 when
the service is available.

3. Stage 2 (figure 6)
– Before deleting the VM from PM1, agent PID1 must contact all of the

clients of the service and inform them that the service is shutting down,
and that they should redirect.

– The client agents will attempt to locate a replacement server using the
discovery service, and will reattach to the newly started service on VM2
(or possibly, some other alternative service).

4. Final State (figure 7)
– Once all of the clients have redirected away from the original service, the

VM on PM1 can be deleted.
– PM1 is now free from virtual machines and able to shut down.

12 LNCS: Transactions on Computational Collective Intelligence

sameLocation?

PID1 PID2 SID21, …,SID2n CID

readyToMigrate

role: host

manage_services

migration(“ok”)

…

…
do(“start”)

…

role: service

done(“start”)
…

role: client

do(“shutdown”)
…

role: initial

role: initial

role: service

…

manage_clients
do (“redirect”)

SID11, … SID1n

…

done(“redirect”)

…

chk (“running”)

confirm()

shutdown

getPeerStategetPeerState

isUnderloaded?

sameLocation?

role: initial

No

Yes

live Migration

manage_services

shutdown

getPeerStategetPeerState

No

getVmProfile

isOverloaded?

role: emigrant

No

createNewVMs &
getServiceList

getPeerStatestartServicegetPeerStatestartServicegetPeerStatestartService

getPeerStategetServiceList

getClientListgetClientListgetClientList

redirect

!same_location
& migrationPossible?

No

Fig. 8. An interaction diagram for an LCC interaction model of offline migration.

Multi-agent VM Management using LCC 13

5 Discussion and Evaluation

5.1 Centralised vs Distributed Approaches

The examples provided above have been designed to explore an extreme version
of the distributed approach to the VM migration problem – individual peers have
no overall knowledge of the system, and interactions are choreographed by a small
number of peers interacting among themselves. This is a deliberate contrast
to the conventional approach where a single controller with global knowledge
orchestrates the entire interaction. In practice however, there is a continuous
spectrum between these approaches - even the fully centralised tools devolve
some details of the migration process to protocols which operate directly between
the peers. And our distributed version relies on a discovery service which could
be viewed as a type of centralised service.

The relative advantages and disadvantages of these approaches will vary, de-
pending on the desired policies. For example, attempting to balance the load
exactly across a whole datacentre clearly requires knowledge and comparison of
the load on every machine. In this case, the distributed solution has no benefits
and the extra overhead means that it will not perform as well as a simple cen-
tralised service. If however, we have a very large number of potential machines,
and we only need (for example) to negotiate with any machine having a partic-
ular property, then the distributed solution excels by avoiding the (performance
and reliability) bottleneck of a central controller.

However, one of the key strengths of the proposed approach is the flexibility
with which the entire policy can be changed – it is easy to imagine a policy in
which one machine assumes the role of “controller” and proceeds to orchestrate
the remaining machines (or some subset of them) in a conventional way, thus
emulating a centralised solution. So, functionally, the centralised approach is sub-
sumed under our more general approach. Trecarichi et al. [9] showed that the OK
system can support both centralised and decentralised architectures in this way.
Their experimental results in an emergency response application, demonstrate
similar outcomes and comparable performance under the ideal assumptions for
both cases.

For any given situation, an interaction model can be chosen which operates
at a specific point on the centralised/decentralised spectrum to suit the current
requirements – for example, we may choose more or less complex negotiations
which yield a more or less efficient solution. These interaction models may be
even be run simultaneously (between disjoint sets of peers). In practice, we
might expect to see a hierarchical model evolve, based on geographical and
organisational boundaries – perhaps with tightly coupled protocols achieving
high efficiency among the local machines, and more flexible protocols negotiating
remote transfers based on more complex factors such as latency and cost.

In a real, production system there would also be a range of non-functional
requirements to consider. Security, for example, may be considered simpler to
guarantee in the centralised case where there is a single point of authority. Alter-
natively, the distributed model with restricted capabilities for individual agents

14 LNCS: Transactions on Computational Collective Intelligence

may have security advantages (see [10] for a discussion of security attacks and
proposed solutions in an LCC-based system). Similarly, a centralised system
presents a single point of failure which would seem to be inherently less reliable
than a more distributed system. However, we have not explored these issues in
detail – they will depend heavily on the details of the implementation, and it
would not be meaningful to compare our prototype to a highly-engineered pro-
duction system. There are also many different approaches which could be taken
to the implementation of an LCC-based system – OpenKnowledge and Okeilidh
for example use completely different discovery services (Pastry vs OKBook), take
different approaches to the coordination of the interactions (elected coordinator
vs fully distributed messaging), and use different underlying protocols.

5.2 Policies and Complexity

One non-functional requirement which merits further discussion is the ease with
which the interaction models can be created, understood, tested, and validated.
LCC specifications have the advantage of a small syntax which is both lightweight
and simple – this is easily understood both for designing new policies or modi-
fying existing ones. However, operators of large data centres are unlikely to cede
control of their resources to systems which may exhibit unexpected emergent
behaviour, or unpredictable policy conflicts. Such problems are clearly possible,
but they are mitigated by several factors:

– Only the “owner” of a machine may control which interaction models that
peer is permitted to subscribe to.

– Within any particular interaction, all of the participating peers are following
the same interaction model. This means that all of the participants will share
a common goal, and a consistent policy.

– These interaction models can be model-checked to verify properties of their
behaviour (see, for example [11] where the interaction models are translated
into the µ-calculus for verification).

– The LCC language makes the interaction model very explicit, and supports
tools for analysis and visualisation of the interactions. This is preferable to
having interactions embedded implicitly in the implementation code.

Within an individual interaction, conflicts are unlikely to occur – all of the
peers will be following the same (potentially formally verified) interaction model
and they will have voluntarily subscribed to this model trusting both the IM
author, and the other peers. Of course, it is possible to envisage several prob-
lem scenarios: certain peers may not follow their claimed role (due to error or
malicious intent), peers may adopt a policy for a new interaction which negates
the previous one, etc. However, these issues are no more problematic than in a
conventional centralised solution, and indeed, the explicitness and isolation of
the policies is likely to make such problems easier to detect and rectify.

Multi-agent VM Management using LCC 15

5.3 Peer and IM Discovery

The discovery service is clearly a critical component of the proposed solution.
In very simple scenarios, such as that described in section 3, it appears to be
almost equivalent to a central controller, in that all of the participating peers
perform most of their communication directly with this service. However:

– The discovery service is only required to match the initial subscriptions to the
interaction roles. As the interactions become more complex, the proportion
of interaction with the discovery service diminishes.

– The service is extremely lightweight and efficient, and can be easily replicated
(the state is very simple).

– There are many different technologies which could be used to implement
the service with varying characteristics - OpenKnowlegde and Okeilidh, for
example, use completely different approaches.

– In a large, practical implementation, it is likely that the discovery service
would be hierarchical. Local matches would be found quickly, and more re-
mote matches would be forwarded to additional hubs. This appears to match
the natural desire to solve negotiations locally and quickly when possible.

On a local scale, and with a comparatively low traffic rate, it it is possible
to envisage a broadcast-based solution with no central service at all, but the
discovery service approach is consistent with most agent-based systems which
require some mechanism for participating peers to locate one another before the
interactions can take place.

5.4 Federation

Apart from the issues of performance and scale, federation has been one of the
main motivating factors for our approach – different organisations may have
different services to offer, different requirements, and different restrictions on
the information that they are willing to share and the peers with whom they are
willing to interact.

A key feature of the OpenKnowledge approach is that there is no require-
ment for global agreement, either on protocols or ontologies – a group of peers
can participate in an interaction simply by agreeing on the terms (constraints)
used in that IM, and following the protocol that it provides. If a peer does not
understand the terminology used by a particular IM, or is not willing to share
the information that it requires, then it cannot participate in that particular
interaction - but it is free to participate in other interactions, or even propose
its own alternative model in which others can be invited to participate.

In particular, status or monitoring information is never shared or synchro-
nised explicitly between the peers. A particular interaction may require knowl-
edge of some specific parameter (say the network bandwidth available to the
VM) in which case the interaction model will specify that participants must
implement a constraint to determine this value, and be willing to share it.

16 LNCS: Transactions on Computational Collective Intelligence

Within one organisation, it is likely that the interaction models and OKCs
will be curated centrally. In this case they will have been designed to interoperate,
and the vocabulary used will be consistent. In a federated environment, IMs and
corresponding constraints may be proposed by multiple organisations and it is
necessary to understand how these relate, which are equivalent, and how we may
map between them. For example, if two different interaction models both require
us to provide the network bandwidth, do they use the same units? As we have
already stressed, there is no requirement for a global agreement on such matters,
but the OpenKnowledge ontology matching service proposes a solution to this
problem by aggregating a number of techniques for ontological matching.

One other issue for large, federated systems is the potential performance
degradation due to the larger number of potential participants, and the increased
latency of interactions. This is an issue for both the discovery service, and the
execution of the interactions themselves. In practice however, we would expect
to see different kinds of interactions between local peers and remote ones –
for example, we might expect a good deal of activity between local machines
as they negotiate an efficient placement. But at some point, the local cluster
may become overloaded and there may be an inter-site negotiation to transfer
a block of machines into the cloud. This leads quite naturally to a hierarchical
organisation of discovery services, and interaction models, suited to the locality
of the communications.

The example in section 4 shows a basic workflow for this “cloud bursting”
scenario. In practice, such an application is likely to require a more complex
model: there may be significant dependencies between the virtual machines and
the services running on them – for example, it may be necessary to make changes
in firewall configurations. This clearly increases the complexity of the interaction
models, although the basic principles remain unchanged. We are also presuming
that it is possible to run agents on the physical machines within the data centre.
This is clearly not the case for current commercial services such as EC2, for
example. However, we could envisage running proxy servers representing such a
service and managing the associated resources.

5.5 Configuration Patterns

In creating interaction models for various scenarios, it has become clear that
there are some common interaction patterns. Perhaps the most obvious of these
is the client-server pattern described in section 4 – there are many cases where
a “service” of some sort needs to be moved, and this requires corresponding
modifications to the client. Another pattern occurs when there is contention
over some resource, and some further action is required to free up the necessary
resource: for example, assume that we require a physical host for a big virtual
machine which needs the full resources of one PM. If all of the available PMs
are running small VMs, we may need to move one of the small VMs to create
space for the large one.

Such patterns can be viewed in the same way as software design patterns and
used to aid and clarify the manual construction of interaction models. But it may

Multi-agent VM Management using LCC 17

also be possible to incorporate these into the tooling, by providing users with a
higher level view of the system and allowing them to specify and compose such
patterns explicitly. We are currently investigating the use of automated planning
techniques [12,13] to compose such (parameterised) patterns automatically for
managing complex workflows .

6 Related Work

There is a considerable amount of existing work on load balancing of virtual
infrastructures. This usually involves a central service which collects monitor-
ing data from the physical and virtual machines, computes any necessary re-
allocation, and orchestrates the appropriate migrations. Analysis of “hotspots”[14]
or SLA violations[15] is necessary to plan a new allocation, but despite some suc-
cess with statistical machine learning[16,17], effective prediction of future per-
formance seems unrealistic in many cases. This type of centralised control limits
the degree to which it is possible to exploit the resources of a more federated
service[18,19]. Managing the interactions of imperative control algorithms in a
centralised system is also a problem[20].

VMWare is a popular provider of commercial management infrastructure for
virtual datacentres. The VMWare vSphere Distributed Resource Scheduler (DRS)
product allows the user to specify rules and policies to prioritise how resources are
allocated to virtual machines. DRS13“continuously monitors utilisation across
resource pools and intelligently aligns resources with business needs” . vSphere
Distributed Power Management (DPM) allows workloads to be consolidated onto
fewer servers so that the rest can be powered-down to reduce power consumption.
Citrix Essentials14 and Virtual Iron “Live capacity” 15 are other commercial
products offering similar functionality, and LBVM16 is an open-source product
based on Red Hat Cluster Suite. However, all of these products use a centralised
management model.

Likewise, tools for managing the workflow of configuration changes are also
standard practice, but based on a centralised execution model; IBM Tivoli Pro-
visioning Manager17 (TPM) is a common commercial solution with a workflow
executed from a central control server. ControlTier18, is a popular alternative
which orchestrates the execution of the workflow by sending a secure shell remote
command to the target node.

The term autonomic computing[21] was popularised by IBM in 2001 to de-
scribe computing systems which are self-configuring, self-healing, self-optimising,

13 http://www.vmware.com/pdf/vmware_drs_wp.pdf
14 https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?

productNumber=HPE4XSE
15 http://www.storageengineers.com/pdf_virtualiron/Evaluation_Guide_0107.

pdf
16 http://lbvm.sourceforge.net/
17 http://www.ibm.com/software/tivoli/products/prov-mgr/
18 http://controltier.org/

http://www.vmware.com/pdf/vmware_drs_wp.pdf
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPE4XSE
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPE4XSE
http://www.storageengineers.com/pdf_virtualiron/Evaluation_Guide_0107.pdf
http://www.storageengineers.com/pdf_virtualiron/Evaluation_Guide_0107.pdf
http://lbvm.sourceforge.net/
http://www.ibm.com/software/tivoli/products/prov-mgr/
http://controltier.org/

18 LNCS: Transactions on Computational Collective Intelligence

and self-protecting (self-*). Kephart and Walsh[22] noted that agent-based tech-
nologies are a natural fit for implementing this type of system, and this has
led to the development of market-based resource management systems such as
[23]. Several people have applied these techniques to virtual machine manage-
ment: Xing[24] describes a system where “each virtual machine can make its
own decision when and where to live migrate itself between the physical nodes”
- for example, two VMs may notice that the applications running on them are
communicating frequently, and the VMs may decide that they should attempt
to migrate so that they are physically closer. Spata and Rinaudo[25] describe
a FIPA-compliant system with very similar objectives to our own which is in-
tended to load-balance VMs across a cluster. However, we are not aware of any
other systems which are driven directly from a declarative specification of the
interaction model.

7 Conclusions and Future Work

We have demonstrated that an agent-based approach using LCC interaction
models is a viable technique for negotiating both virtual machine placement and
execution of the associated workflows. This provides a framework for supporting
arbitrary interaction models which are capable of implementing a wide range of
policies and approaches, suitable for different situations. The interaction models
clearly expose the protocols which can be easily verified, shared, composed and
modified. A particular strength of this approach is the lack of any requirement
for prior agreement on protocols or ontologies, which makes it a particularly
effective solution in federated environments.

We are currently investigating more complex workflows, and particularly
the automatic generation of interaction models using automated planning tech-
niques.

Acknowledgments

This research has been partly supported by a grant from HP Labs Innovation
Research Program Award.

References

1. Anderson, P., Bijani, S., Vichos, A.: Multi-agent negotiation of virtual machine
migration using the lightweight coordination calculus. In: Proceedings of the 6th
International KES Conference on Agents and Multi-agent Systems – Technologies
and Applications. (2012)

2. Walton, C., Robertson, D.: Flexible multi-agent protocols. Technical report, Uni-
versity of Edinburgh (2002)

3. Robertson, D.: A lightweight coordination calculus for agent systems. Declarative
agent languages and technologies II (2005) 109–115

4. Pinninck, A.P.D., Kotoulas, S., Siebes, R.: The OpenKnowledge kernel. In: Pro-
ceedings of the IX CESSE conference. (2007)

Multi-agent VM Management using LCC 19

5. Siebes, R., Dupplaw, D., Kotoulas, S., de Pinninck Bas, A.P., van Harmelen, F.,
Robertson, D.: The OpenKnowledge System: an interaction-centered approach to
knowledge sharing. In Meersman, R., Tari, Z., eds.: Lecture Notes in Computer
Science. Volume 4803., Springer, Springer (2007) 381–390

6. Kotoulas, S., Siebes, R.: Adaptive routing in structured peer-to-peer overlays.
In: 3rd Intl. IEEE workshop on Collaborative Service-oriented P2P Information
Systems (COPS workshop at WETICE07), Paris, France, IEEE Computer Society
Press, Los Alamitos. (2007)

7. Anadiotis, G., Kotoulas, S., Lausen, H., Siebes, R.: Massively scalable web service
discovery. In: Advanced Information Networking and Applications, 2009. AINA’09.
International Conference on, IEEE (2009) 394–402

8. Li, J.: Agent-based management of virtual machines for cloud infrastructure. Mas-
ter’s thesis, School of Informatics, University of Edinburgh (2011)

9. Trecarichi, G., Rizzi, V., Vaccari, L., Marchese, M., Besana, P.: Openknowledge at
work: exploring centralized and decentralized information gathering in emergency
contexts. (2009)

10. Bijani, S., Robertson, D.: A review of attacks and security approaches in open
multi-agent systems. In: Artificial Intelligence Review. Springer (2012)

11. Osman, N., Robertson, D., Walton, C.: Dynamic model checking for multi-agent
systems. Declarative Agent Languages and Technologies IV (2006) 43–60

12. Herry, H., Anderson, P., Wickler, G.: Automated planning for configuration
changes. In: Proceedings of the 2011 LISA Conference, Usenix Association (2011)

13. Herry, H., Anderson, P.: Planning with global constraints for computing infrastruc-
ture reconfiguration. In: CP4PS-12 - The AAAI-12 Workshop on Problem Solving
using Classical Planners. (2012)

14. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box
strategies for virtual machine migration. In: Proceedings of the 4th Usenix Sym-
posium on Networked Systems Design and Implementation, Usenix (April 2007)

15. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing SLA violations. Integrated Network Management, 2007. IM ’07. 10th
IFIP/IEEE International Symposium on (21 2007-Yearly 25 2007) 119–128

16. Bodk, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Proceedings of Workshop on Hot Topics in Cloud Computing (HotCloud). (2009)

17. Liu, X.: Prediction of resource requirements for cloud computing. Master’s thesis,
School of informatics, University of Edinburgh (2010)

18. Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic live adaptation of
virtual computational environments in a multi-domain infrastructure. Autonomic
Computing, 2006. ICAC ’06. IEEE International Conference on (June 2006) 5–14

19. Grit, L., Irwin, D., Aydan, Chase, J.: Virtual machine hosting for networked
clusters: Building the foundations for ”autonomic” orchestration. Virtualization
Technology in Distributed Computing, 2006. VTDC 2006. (Nov. 2006) 7–7

20. Schmid, M., Marinescu, D., Kroeger, R.: A Framework for Autonomic Perfor-
mance Management of Virtual Machine-Based Services. In: Proceedings of the
15th Annual Workshop of the HP Software University Association. (June 2008)

21. Murch, R.: Autonomic Computing. 1 edn. IBM Press (2004)

22. Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic com-
puting policies. In: Policies for Distributed Systems and Networks, 2004. POLICY
2004. Proceedings. Fifth IEEE International Workshop on. (june 2004) 3 – 12

20 LNCS: Transactions on Computational Collective Intelligence

23. Schnizler, B., Neumann, D., Veit, D., Reinicke, M., Streitberger, W., Eymann,
T., Freitag, F., Chao, I., Chacin, P.: Catnets deliverable 1.1: Theoretical and
computational basis. Technical report, CatNet Project (2005)

24. Xing, L.: A self-management approach to service optimization and system integrity
through multi-agent systems. Master’s thesis, University of Oslo, Department of
Informatics (May 2008)

25. Rinaudo, M.O.S..S.: Virtual machine migration through an intelligent mobile
agents system for a cloud grid. In: Journal of Convergence Information Tech-
nology. Volume 6. Advanced Institute of Convergence Information Technology
(June 2011)

	Multi-agent Virtual Machine Management Using the Lightweight Coordination Calculus
	Introduction
	LCC and OpenKnowledge
	LCC
	OpenKnowledge
	The Discovery Service:
	Ontology Matching:

	Interaction Models for VM Allocation
	Managing the Workflow
	Discussion and Evaluation
	Centralised vs Distributed Approaches
	Policies and Complexity
	Peer and IM Discovery
	Federation
	Configuration Patterns

	Related Work
	Conclusions and Future Work

