
A Formal Semantics for the SmartFrog Configuration

Language

Paul Anderson · Herry Herry

Abstract System Configuration Languages are now widely used to drive the de-
ployment and evolution of large computing infrastructures. Most such languages
are highly informal, making it di�cult to reason about configurations, and intro-
ducing an important source of failure. We claim that a more rigorous approach
to the development and specification of these languages will help to avoid these
di�culties and bring a number of additional benefits. In order to test this claim,
we present a formal semantics for the core of the SmartFrog configuration language.
We demonstrate how this can be used to prove important properties such as ter-
mination of the compilation process. To show that this also contributes to the
practical development of clear and correct compilers, we present three indepen-
dent implementations, and verify their equivalence with each other, and with the
semantics. Supported by an extended example from a real configuration scenario,
we demonstrate how the process of developing the semantics has improved un-
derstanding of the language, highlighted problem areas, and suggested alternative
interpretations. This leads us to advocate this approach for the future development
of practical configuration languages.
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1 Introduction

System configuration languages [1–3,7,9] are now ubiquitous. Almost all major
installations and services depend on specifications written in these languages to
deploy and manage the software and configuration files which define the very
purpose of the system. Puppet [9] for example, is used by Google - to manage
“many many thousands” of developer workstations; The international securities
exchange (ISE); Los Alamos National Laboratory; GitHub; WikiMedia; and the
Facebook gaming company Zynga.

This clearly represents an advance on the former ad-hoc approaches. However,
most popular configuration languages are extremely informal. The behaviour is
defined implicitly by a single implementation, and the languages are often used
in ways that interact with the underlying implementation language to produce
systems which are very di�cult to understand or reason about.

“In his case study about Linux system engineering in air tra�c control, Stefan

Schimanski showed how scalable Puppet really is and how it can guarantee re-

liable mass deployment of the Linux-based, mission critical applications needed

in air tra�c control centers.” [32]

In critical applications such as air tra�c control, this creates a huge gulf be-
tween the rigorous development of the application software itself, and the config-
uration of the infrastructure on which it runs. It is likely that configuration errors
will continue to be a major source of system failures [28], and that the increasing
scale of the automation will lead to larger and more dramatic failures.

One way to ease this problem is to provide a clearer, more formal semantics
for the specification language itself. In cases where the language is intimately con-
nected to the underlying implementation language, this is very di�cult. However,
for a well-designed declarative specification language which is decoupled from the
implementation language, this would yield the kind of practical benefits which we
expect from a well-designed programming language:

– The formal semantics acts as a precise, independent reference for implementors,
so that we can confidently create di↵erent implementations which behave in
the same way.

– It is possible to create tools which analyse the configurations in useful ways;
for example, automatically analysing the provenance of configurations for fault
analysis and security [15].

– It is easier to create interoperable tools, analogous to a software development
environment, which might include tools for generating, analysing, refactoring
and visualising configurations.

– A formal definition of the language supports the ability to prove certain prop-
erties of the configuration, increasing the reliability and security of the config-
urations.

– The formal semantics can be used to guide the implementation and structure
of the compiler.

A less obvious, but very significant benefit is that the process of formalising
the semantics often exposes ambiguities and other issues with the language itself.
This ultimately leads to a cleaner language design which is less prone to misun-
derstanding and errors.
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We are not aware of any other work which formalises the complete evaluation
of an existing production language: Our contribution in this paper is to present
a complete formal semantics for the core of the SmartFrog [11] configuration lan-
guage, and to demonstrate that this approach can be used to produce reliable,
compatible tools.

We start by giving su�cient background to establish a common understand-
ing of “configuration languages” in general (§2), and the SmartFrog language in
particular (§3). We include some background on the semantics to make the formal
processes more accessible to configuration practitioners (§4), and we discuss some
of the particular characteristics of system configuration languages which a↵ect the
choice of semantics (§5). We then present the detailed semantics for SmartFrog
(§6), and demonstrate how this can be used to prove some formal properties (§7).
We finish by describing the practical implementation and evaluation of several
compilers (§8), and discussing some of the insights which the process has provided
into the language (§9) and its application to real configuration scenarios (§10).

2 System configuration languages

System configuration tools are used to automatically deploy a new system, or
reconfigure an existing one into some desired state. These tools are driven by
specifications in a system configuration language. There are a range of approaches
to the tools and corresponding languages. At one extreme, the language may be an
extension of a conventional imperative scripting language. At the other extreme,
it may be a domain-specific language which provides a declarative description of
the desired state. Most tools tend towards one of these extremes, but incorporate
elements of the other.

Tools which advocate a more imperative approach are easier for administra-
tors to adopt, since they are usually a natural extension of an existing manual,
or scripted process; there is little, or no explicit specification of the desired con-
figuration state, and the administrator uses the language to manually define a
workflow to achieve the desired result – for example, Ansible [1]. These workflows
need careful testing to make sure that they achieve the (implicit) desired state,
and they can be brittle if the initial state of the system is one which has not been
anticipated.

More declarative tools usually provide a custom language to define the desired
state of the system, which is independent of the deployment process – for example
Puppet [9]. This makes it easier to specify and reason about the desired configura-
tion, but harder to control the sequence in which the reconfiguration takes place.
However, automated planning techniques can now be used to generate workflows
[24] which are guaranteed to meet any required constraints, and to achieve the
goal state, from any viable initial state.

There are often valid pragmatic reasons for including some imperative aspects
in a configuration language. But for many imperative tools, the configuration
“specification” is tied to the underlying implementation language, and the de-
ployment process – for example, specifications in Chef [3] contain arbitrary Ruby
code. The semantics for such a specification is (a) likely to require a complete
semantics for the embedded imperative language, and (b) unlikely to capture the
“higher level” intent of the configuration specification.
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The use of a separate language for declarative configuration allows us to con-
centrate on a clear statement of the requirements; language features can be pro-
vided to support domain-specific concerns such as e↵ective sharing of common
configuration elements, composing requirements from many di↵erent sources, and
supporting “loose” specifications [26]. Supporting these “high level” specifications
typically requires features such as instance inheritance and other structuring facil-
ities in the source language. These must be compiled down into explicit configura-
tion parameters for each subsystem of each machine. The (separate) deployment
process can then be orchestrated independently using whatever languages and tools
are most appropriate. The semantics for a good declarative configuration language
should therefore be simpler, and able to capture the essence of the configuration
requirements. As well as being clearer and less error-prone, specifications in this
form can be used for a wider range of purposes than simply driving the deployment
process.

3 SmartFrog

SmartFrog [11] (Smart Framework for Object Groups) is “a framework for con-
figuring and automatically activating distributed applications”. The SmartFrog
language (SF) is a declarative language for describing system configurations. This
is independent of the runtime deployment system, self-contained, and has a well-
defined (informal) syntax and semantics, with an open-source implementation. The
language is su�ciently rich to include many of the significant features supported
by other declarative languages, and a general object-model which can represent
relationships between arbitrary objects. The style of the language is typical of
declarative configuration languages, being broadly based on untyped attribute-
value pairs with prototype-based instance inheritance. This makes it a good can-
didate for development of an exploratory formal semantics.

3.1 A SmartFrog example

We can illustrate the main features of the SmartFrog language using the config-
uration shown in figure 1. This consists of four machines: servers s1 and s2, and
desktop clients pc1 and pc2. Each machine has an attribute dns that holds the
address of the DNS server. Each server has a web service which runs on port 80
and can be in a running or stopped state. Both pc1 and pc2 are using the web service
from s1. Figure 2 shows the specification of this example system in SF.

SF Objects are collections of (untyped) attribute-value pairs, and the language
provides an instance-based inheritance mechanism which allows objects to inherit
attribute values from other prototype objects. This is common in configuration lan-
guages, but it is di↵erent from the class-based type inheritance which is typical
in programming languages such as Java or C++ (although Javascript uses a sim-
ilar inheritance mechanism, as does Self [10]). The values of inherited attributes
can be overridden with more specific values, and this enables code reuse through
inheritance and composition.

Lines 1-3 define a prototype component Machine with a single attribute dns

which holds the address of the DNS server. Lines 4-7 define another prototype
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Fig. 1: An example system that consists of two web servers and a client.

1 Machine extends {

2 dns "ns.foo";

3 }

4 Service extends {

5 running true;

6 port 80;

7 }

8 sfConfig extends {

9 s1 extends Machine , {

10 web extends Service

11 }

12 s2 extends s1, {

13 web:running false;

14 }

15 pc1 extends Machine , {

16 refer DATA s1:web;

17 }

18 pc2 pc1;

19 }

Fig. 2: The SF specification for the configuration in figure 1.

component Service with two attributes: running and port which hold the ser-
vice state and port number respectively. Lines 8-19 specify the main component
sfConfig, which defines the specification of the overall system.

Lines 9-11 describe a server instance s1 which uses Machine as prototype. In
addition to the dns attribute (inherited from Machine), it has a web attribute which
represents the service. Lines 12-14 describe a second server s2 which again uses s1
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as prototype where the inherited value of web.running (true) is overridden with
false. Lines 15-17 define desktop client pc1 which also uses Machine as a prototype.

SF also supports several types of reference between objects: the default reference
type (link reference) is evaluated at compile time so that the value of the defined
attribute is the same as the value of the referenced attribute. For example, line 18
defines the desktop client pc2 to have the same attributes and values as pc1. Data

references are prefixed with the DATA keyword and are not evaluated by the compiler
(i.e. the reference simply evaluates to the identifier which is then interpreted by
the runtime system); for example, line 16. The “:” operator is used to refer to
sub-elements (for example, s1:web).

Figure 3 shows the output from the compiler (presented here in YAML [12]),
which is an evaluation of the main sfConfig object.

1 s1:

2 dns: "ns.foo"

3 web:

4 running: true

5 port: 80

6 s2:

7 dns: "ns.foo"

8 web:

9 running: false

10 port: 80

11 pc1:

12 dns: "ns.foo"

13 refer: s1:web

14 pc2:

15 dns: "ns.foo"

16 refer: s1:web

Fig. 3: The evaluation of the specification in figure 2.

The above example covers the SF core features: prototyping, component (ob-
ject), primitive value, data reference, link reference, and main component (sfConfig).
SF also supports vectors (not shown in the example) which can be used to repre-
sent lists of arbitrary types. For example:

1 sfConfig extends {

2 myvector [ true , 1, [ false , 0 ] ];

3 }

Although evaluation appears to be a fairly simple process, it is not explicit in
this informal description exactly how these basic features interact. For example,
there are several possible interpretations of a specification in which an object
overrides an attribute with one which has a di↵erent structure. It is exactly this
kind of ambiguity which a formal semantics is able to clarify (see §9.3, for example).



A Formal Semantics for the SmartFrog Configuration Language 7

4 Syntax & semantics

This section provides a brief overview of the notation and style of semantics used
in the remainder of the paper.

4.1 Syntax

The syntax of a language defines the strings of characters which make meaningful
statements in the language. This is usually expressed in BNF (Backus-Naur Form)
notation. For example:

digit ::= 0|1|2|3|4|5|6|7|8|9

num ::= digit | num digit

If there are a finite number of a certain element (such as the decimal digits) then
we can list them explicitly. Otherwise we can specify them using recursion (the
num above), or we can use the Kleene (. . . )⇤ and (. . . )+ with the same meaning
as in a regular expression.

Note that we use typewriter font to indicate literal strings that actually appear
in the language itself, and italics to indicate non-terminals which represent a whole
class of elements.

4.2 Semantics

The syntax of a language tells us which expressions are legal in the language,
but it says nothing about the meaning of those expressions. A syntactically correct
configuration specification (in Puppet, for example) will compile, but the language
syntax on its own is insu�cient to understand the configuration that will actually
appear when this specification is deployed.

We need a semantics [29] to add this definition of the meaning. For example,
the following strings intuitively have the same meaning (semantics), although they
are written using di↵erent notations (syntax):

forty two , 42 , 0x2A , XLII

4.2.1 Valuation functions

A valuation function specifies how to map the elements of the syntax into something
which represents their ”meaning” (a denotation). For example1:

F J forty two K , 42
F J 42 K , 42

F J 0x2A K , 42
F J XLII K , 42

The elements on the left hand side (typewriter font) are literal strings which appear
in the source language, while the elements on the right hand side (roman font) are
abstract numbers. The symbol , is read as “is defined as”. The second line, for
example, says that the “meaning” of the ASCII character 4 followed by the ASCII
character 2 is the number 42.
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In the same way that we can use recursion in the syntax to describe source
strings of arbitrary length, we can use recursion in the semantics to define the
meaning of these strings. We can do this easily with the decimal representation
above, but it is shorter to illustrate using binary numbers (see [30], p. 27):

F J 0 K , 0
F J 1 K , 1

F J N 0 K , 2⇥ F JN K
F J N 1 K , 2⇥ F JN K +1

Notice that N is a variable in the domain of the language (i.e. a string of binary
digits), and F JN K is the denotation of N (i.e. the number represented by the string
N).

With a bit more work, we could create similar expressions for the other repre-
sentations. And the semantics can be expanded to incorporate further constructs of
the language in the same way. For example, two di↵erent versions of multiplication
syntax:

term ::= num | (mul term term)

term ::= num | term * num

may have the same semantics:

F J(mul T1 T2)K , F JT1 K ⇥ F JT2 K
F J T1*T2 K , F JT1 K ⇥ F JT2 K

Notice that the * on the lefthand side is the ASCII character “*”, but the ⇥ on
the righthand side is the abstract mathematical multiplication operator.

4.2.2 Stores

In the above examples, evaluation depends only on the argument to the function.
Most real languages involve some kind of store to hold, for example, the values of
the variables in an imperative programming language, or a configuration language.
Many operations then depend on the values in this store, as well as their arguments.

As a simple example, a calculator may have a memory (store), and an M+ oper-
ation which adds a number to the memory. It is usual to represent such operations
as functions which take the old contents of the store and return the new contents.
For example:

M+ : Integer! Memory! Memory

M+ JN K , � s . (s+N)

The above � (lambda) notation simply means “a function which adds N to
its argument”. So the meaning of the operation M+ J 5 K is “a function which
adds 5 to its argument”. Repeated operations then translate naturally into nested
applications of the function. For example:

M+ J 2 K(M+ J 4 K(M+ J 3 K(0)))



A Formal Semantics for the SmartFrog Configuration Language 9

4.2.3 Semantic algebras

The combination of the semantic operators, together with the semantic domain of
objects that they operate on, is known as the semantic algebra – in this case, we
are dealing with arithmetic operators over the natural numbers.

The examples above are a lot simpler than any real language, but it should be
possible to see how this approach can be used to address some of questions raised
in the introduction: for example, we could prove that “one hundred and seven” (in
one language) had the same meaning as “CVII” (in some other language). And,
if we were writing a new compiler, we would have an unambiguous description of
the intended result that we could use during implementation and testing.

5 Semantics of configuration languages

There are several di↵erent approaches to specifying the semantics of programming
languages. However, declarative configuration languages are quite di↵erent from
most programming, or scripting languages – they define the characteristics of the
intended configuration rather than the process of deploying that configuration. In
many ways, this makes the semantics much simpler. However, they often emphasise
additional features which may not be prominent in a mainstream “programming”
language (such as prototypes, value-inheritance and composition). This motivates
our choice of the denotational approach to the semantics, as described in the pre-
vious section, rather than an operational or axiomatic approach. This is consistent
with the approach normally used in other domains, such as database query lan-
guages.

5.1 The semantic domain

The values of the denotations belong to some semantic domain. For a programming
language, this is usually some form of abstract “store” representing a computer
memory and the values that it holds. The result of evaluating a program is taken
to be the contents of the memory when the program terminates. However, the
meaning of “evaluation” may be di↵erent for di↵erent types of language. For ex-
ample with CSS/HTML we might be interested in the resulting attributes on the
various elements.

One of the challenges for configuration languages is to choose a meaningful
abstract representation for the results of the evaluation. At one extreme, we might
consider the entire contents of the target machine disk to be the result of a config-
uration process. However, most declarative tools provide a more useful description
of the configuration at the level where the compiler interfaces with the deployment
engine. This is usually equivalent to a list of attribute-values pairs which represent
meaningful abstractions of configuration parameters such as “the IP address of the
DNS server”. The Puppet catalog is a typical example. This is discussed further in
§9.4.
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5.2 The abstract syntax

There is also some choice about the level of abstraction of the “input” to the
semantic functions; in the previous section, we used the concrete syntax of the
source language. For a realistic language, the semantics would usually deal with
slightly higher-level concepts represented by some abstract syntax; this would typi-
cally include terminals such as integer, identifier or string, without describing their
detailed representation as input strings.

5.3 Types

Most configuration languages are not strongly-typed. Attribute values are usu-
ally arbitrary strings, and attributes can often be dynamically added with arbi-
trary names. Although it is sometimes possible to specify validation expressions
or “schema” which restrict the allowable values for some attributes, type checking
typically only occurs at runtime. Stronger typing is useful in some applications –
for example when generating configurations from constraints [25], or when plan-
ning workflows [24]. However, the core SmartFrog language is dynamically-typed,
and there is no type-checking during the compilation process, so we do not discuss
typing issues further in this paper.

5.4 Previous work

We are aware of no significant related work specifically on the semantics of “sys-
tem” configuration languages such as those discussed above. Couch [19] describes
the “meaning crisis that system administrators face”, arguing for a clearer seman-
tics, and in [20], he describes an operational approach to the formalisation of the
deployment process which defines the transformation of one configuration into an-
other. Hewson [25] provides a semantics for the ConfSolve language, although the
domain in this case is the MiniZinc input to a constraint solver, rather than a
more explicit representation of the configuration itself. Bekezhanova [16] discusses
a semantics for Puppet, but this is not developed in detail.

A number of languages have been designed for alternative approaches to the
configuration problem - for example policy languages which usually describe actions

triggered by events. Such languages are concerned with the sequence of actions re-
quired to deploy a configuration. As noted in section 2, this is deliberately outside
the scope of a declarative configuration language such as SmartFrog which is fo-
cussed on describing the collaborative construction of the desired state of the
system, rather than the process of deploying that state. Formal semantics have
been developed for several such languages [27,13], including Ponder [21]. These
tend to use an operational semantics (rather than a denotational approach) which
is more suited to the imperative nature of the actions.

The term “configuration” is also used in a number of di↵erent disciplines, and
the value of a formal semantics has been demonstrated in many related areas
(for example, feature composition for product configuration [18]), but none of
these are specifically relevant to the denotational semantics of system configuration
languages as discussed in this paper.



A Formal Semantics for the SmartFrog Configuration Language 11

Some aspects of programming language semantics are relevant however, partic-
ularly for illustrating the di�culty of trying to clarify the semantics of languages
which have been developed in an informal way – for example, the the C prepro-
cessor [22].

6 Semantics of SmartFrog

This section presents the formal semantics of the core SF language: the abstract
syntax (§6.1), the domains (§6.2), the basic operations on the domains (§6.3) and
the valuation functions (§6.4).

The production language supports a few additional features such as the ability
to “include” files, and to evaluate simple builtin functions – for example, basic
arithmetic and string manipulation. These do not present any special semantic
di�culties, but they are not included in the core semantics for simplicity. The
production language also supports an extended semantics for references which is
not included here, but is discussed in section §9.2.

6.1 Abstract syntax

Definition 1 (Terminal Symbols) These are the basic symbols of the language
which appear in the source code:

Bool 2 Boolean

Num 2 Number

Str 2 String

I 2 Identifier

Null 2 NullValue

Definition 2 (Non-Terminals) These are the non-terminal elements of the syn-
tax:

SF 2 SFSpecification

B 2 Block

A 2 Assignment

P 2 Prototype

V 2 Value

R 2 Reference

DR 2 DataReference

LR 2 LinkReference

Vec 2 Vector

BV 2 BasicValue

Definition 3 (Syntax) The non-terminals are defined by the following abstract

syntax. Note that we do not specify the details of the concrete syntax; for example,
an assignment includes a reference and a value – but we do not care about the
punctuation or the keywords which are used to represent this in the source code
(the concrete syntax is given in appendix A).
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SF ::= B // SF specification

B ::= A B | ✏ // block

A ::= R V // assignment

P ::= R P | B P | ✏ // prototype

V ::= BV | LR | P // value

R ::= ( I )+ // reference

DR ::= R // data reference

LR ::= R // link reference

Vec ::= ( BV )⇤ // vector

BV ::= Bool | Num | Str | DR | Vec | Null

The symbol ✏ represents the empty string, and (L)⇤ and (L)+ represent possibly-
empty, and non-empty lists of elements of type L respectively.

6.2 Domains

The primary semantic domain is used to represent the output of the configuration
process. For the SF compiler, this is a tree of attribute-value pairs such as that
shown in figure 3. Figure 4 shows a simple example, together with the representa-
tion used in the semantics.

1 a extends {

2 c 3;

3 }

4 b extends {

5 }

Fig. 4: An example of a compiled specification together with the corresponding
store representation.

Definition 4 (List Data Structure) Elements of (L)⇤ are lists of L-elements:
l1 :: l2 :: ... :: ln :: ?L, n � 0, and ?L represents an empty list. If x = l1 :: l2 :: ... ::
ln :: ?L, then |x| = n and l

0
2 x i↵ 9i . l

0 = li.
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Definition 5 (The secondary domains) The values of the attributes belong to
one of these secondary domains:

– I, the identifier domain;

– B = {True,False}, the boolean domain;

– N = {Null}, the null domain;

– R, the real number domain;

– S, the string domain;

– R = {ri | ri 2 (I)⇤}, the reference domain, where ?I is an empty reference;

– V = B [ N [ R [ S [ R [ {vi | vi 2 (V)⇤}, the basic value domain.

Definition 6 (The primary domain) Formally, the Store domain S = (I⇥ V)⇤

is a list of identifier-value pairs, where V = V[S. i.e. the elements of the store are
either basic values or (recursively) sub-stores. We use ?S to represent an empty
store, and V? = V [ {?} for the lifted domain which includes the undefined value
?.

A reference is the sequence of identifiers specifying the “path” to a particular
attribute in the tree structure. This is similar to a filesystem pathname - for
example in figure 4, the reference a :: b :: ?I

2 refers to the attribute with value
3. An empty reference (?I) refers the root. Note that a reference can be written
as a concatenation of an identifier with another reference, for example: r = id :: r0

where id 2 I and r, r

0
2 R.

Note that vectors may be nested, and a single-element vector is not the same
as the element itself.

6.3 Semantic operations

This section defines the fundamental operations on the semantic domain. These
are analogous to the basic arithmetic operations in the examples from section
§4.2; in this case they operate on the trees of attribute-value pairs rather than the
natural numbers.

For completeness, we include formal definitions for all of the operations. Most of
these are straightforward manipulations involving references and the hierarchical
store. However, some such as bind (definition 13) and inherit (definition 18) have
significant implications for the semantics, and these are discussed further in section
§9.

Definition 7 (operator �) � is a binary operator that returns the concatenation
of the operands. Either operand may be an identifier or a reference, but the result
is always a reference.

� : (I [R)⇥ (I [R)! R

2 The concrete syntax of this formal representation is a:c.
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id1 � id2 , id1 :: id2 :: ?I
?I � r , r

(id :: r)�?I , id :: r
(id :: r)� r2 , id :: (r � r2)

id� r , id :: r
?I � id , id :: ?I

(id1 :: r)� id2 , id1 :: (r � id2)

Where :: is the cons operators which prepends a value to a list, r is a list of
identifiers, and ?I is the empty list.

Definition 8 (operator  )  is a binary operator that returns the first operand
with any common prefix removed.

 : R⇥R! R

?I  r , ?I
r  ?I , r

(id :: r1)  (id :: r2) , r1  r2

(id1 :: r1)  (id2 :: r2) , id1  r1

Definition 9 (operator ⌘) ⌘ is a binary operator that return True if two refer-
ences are equal, otherwise it returns False.

⌘ : R⇥R! B

?I ⌘ ?I , True

(id :: r) ⌘ ?I , False

?I ⌘ (id :: r) , False

(id1 :: r1) ⌘ (id2 :: r2) , (id1 = id2) ^ (r1 ⌘ r2)

Definition 10 (operators ✓R and ⇢R) ✓R and ⇢R are true if the left reference
is a (strict/non-strict) prefix of the right one.

✓R: R⇥R! B, ⇢R: R⇥R! B

r1 ✓R r2 , ((r1  r2) = ?I)
r1 ⇢ r2 , (r1 ✓R r2) ^ ¬(r1 ⌘ r2)

Definition 11 (prefix) The prefix function returns the longest strict prefix of the
given reference.

prefix : R! R

prefix(?I) , ?I
prefix(id :: ?I) , ?I

prefix(r :: idn :: ?I) , r :: ?I

Definition 12 (put) The put function updates the value of an identifier in a store,
or adds it if it does not already exist. Notice that this operates only on single
identifiers – the following function (bind) extends this to support hierarchical
references.

put : S ⇥ I⇥ V ! S
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put(?S , id, v) , hid, vi :: ?S
put(hid, vsi :: s0, id, v) , hid, vi :: s0

put(hids, vsi :: s0, id, v) , hids, vsi :: put(s0, id, v)

Definition 13 (bind) The bind function updates the value of a reference in a
store. An error occurs if an attempt is made to update a reference whose parent
does not exist (err2), or whose parent is not itself a store (err1). It is also illegal
to replace the root store (err3). For simplicity, we leave the error handling rather
informal.

bind : S ⇥R⇥ V ! S

bind(s,?I, v) , err3
bind(s, id :: ?I, v) , put(s, id, v)

bind(?S , id :: r0, v) , err2
bind(hid, vsi :: s0, id :: r0, v) , if vs 2 S then hid, bind(vs, r0, v)i :: s0

else err1
bind(hids, vsi :: s0, id :: r0, v) , hids, vsi :: bind(s0, id :: r0, v))

Note that this behaviour is slightly di↵erent from the current version of SF –
see the discussion in section §9.2.1.

Definition 14 (find) The find function looks up the value of a reference in a
store.

find : S ⇥R! V?

find(s,?I) , s

find(?S , r) , ?

find(hid, vsi :: s0, id :: ?I) , vs

find(hids, vsi :: s0, id :: ?I) , find(s0, id :: ?I)
find(hid, vsi :: s0, id :: r0) , if vs 2 S then find(vs, r0) else ?
find(hids, vsi :: s0, id :: r0) , find(s0, id :: r0)

Definition 15 (operators ⇢S) ⇢S is true if the left store is a sub-store of the
right one.

⇢S : S ⇥R! B

s1 ⇢S s2 , 9r 2 R where find(s2, r) = s1 and r 6= ?I

Definition 16 (resolve) The resolve function looks up a reference in a store, by
starting with a given namespace (reference of the sub-store) and searching up the
hierarchy of parent stores until a value is found (or not). It returns a tuple hns, vi,
where ns is the namespace in which the target element is found and v is the value.
If the target is not found then hns, vi = h?I,?i.

resolve : S ⇥R⇥R! R⇥ V

resolve(s,?I, r) , h?I, find(s, r)i
resolve(s, ns, r) , if v = ? then resolve(s, prefix(ns), r) else hns, vi

where v = find(s, ns� r)
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Definition 17 (copy) The copy function copies every attribute from the second
store to the first store at the given prefix (pfx).

copy : S ⇥ S ⇥R! S

copy(s1,?S , pfx) , s1

copy(s1, hid, vi :: s2, pfx) , copy (bind (s1, pfx� id, v) , s2, pfx)

Definition 18 (inherit) The inherit function copies values from a given proto-
type (proto) to the target store (r). The prototype may be located in a higher-level
namespace, hence the use of resolve to locate the corresponding store.

inherit : S ⇥R⇥R⇥R! S

inherit(s, ns, proto, r) , if vp 2 S then copy(s, vp, r) else err4

where hnsp, vpi = resolve(s, ns, proto)

This function determines the behaviour of the prototype inheritance in SF –
this is discussed further in section §9.3. err4 occurs if the value of the prototype
is not a store.

6.4 Valuation functions

The valuation functions in this section show how each element of the abstract
syntax of an SF specification is evaluated. Evaluation of a complete SF specification
yields a store s 2 S:

Definition 19 (terminals) The terminal symbols are evaluated in the obvious
way, as described in section §4.2, using functions with the following signatures:

Bool : Boolean! B
Num : Number! N
Str : String! S

I : Identifier! I
Null : NullValue! N

For example:

Num J 42 K , 42
Bool J false K , False

Definition 20 (references) Both types of reference are evaluated to a list of iden-
tifiers:

LR : LinkReference! R

DR : DataReference! R

R : Reference! R

LR JR K , R JR K
DR JR K , R JR K

R J I1, ..., In K , I J I1 K :: ... :: I J In K :: ?I

Definition 21 (vectors) Vectors are evaluated by evaluating each element:
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Vec : Vector! (V)⇤

Vec JBV1, ...,BVn K , BV JBV1 K :: ... :: BV JBVn K :: ?V
Vec J ✏ K , ?V

Definition 22 (basic values) A basic value (BV) is one of the basic element types:

BV : BasicValue! V

BV JBool K , Bool JBool K
BV JNum K , Num JNum K
BV JStr K , Str JStr K
BV JDR K , DR JDR K
BV JVec K , Vec JVec K
BV JNull K , Null JNull K

Definition 23 (prototype) A prototype is a sequence of bodies or references.
Bodies are evaluated directly, while references are first resolved (in the current
context) and then evaluated. Composition proceeds right-to-left (since defined
values override any corresponding values in an extended prototype).

P : Prototype! R⇥R⇥ S ! S

P JB P K , � (ns, r, s) . P JP K (ns, r,B JB K(r, s))
P JR P K , � (ns, r, s) . P JP K (ns, r, inherit(s, ns,R JR K, r))

P J ✏ K , � (ns, r, s) . s

Definition 24 (value) A value is either a basic value, a prototype, or a link refer-
ence. Basic values are entered directly in the store. Prototypes are first evaluated,
and link references are first resolved.

V : Value! R⇥R⇥ S ! S

V JBV K , � (ns, r, s) . bind(s, r,BV JBV K)
V JP K , � (ns, r, s) . P JP K (ns, r, bind(s, r,?S))

V JLR K , � (ns, r, s) . if v0 = ? then err5 else bind(s, r, v0)

where hns0, v0i = resolve(s, ns,LR JLR K)

err5 occurs if the value referred to by the link-reference (LR) does not exist.

Definition 25 (assignment) To assign a value to a reference, the store entry for
the reference is updated to contain the value.

A : Assignment! R⇥ S ! S

A JR V K , � (ns, s) . V JV K(ns, ns� r, s)

Definition 26 (body) A body is a sequence of assignments. These are recursively
evaluated left-to-right with the store resulting from one assignment being used as
input to the next assignment.

B : Body! R⇥ S ! S
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B JA B K , � (ns, s) . B JB K (ns,A JA K(ns, s))
B J ✏ K , � (ns, s) . s

Definition 27 (specification) A complete SFSpecification is evaluated as a body,
in the context of an empty store ?S and a reference ?I to the root namespace.
The evaluation of the main sfConfig component is returned (other components
are ignored - see figure 2).

SF : SFSpecification! S

SF JB K , if v 2 S then v else err7

Where r = sfConfig :: ?I, and v = find(B JB K(?I,?S), r)

It is an error (err7) if the main sfConfig element is not a store (for example, if it
is a basic value).

7 Provable properties

The formal semantics provides a framework in which to prove properties about the
language. In most cases, a fairly informal proof is su�cient to increase confidence
in the correctness of a language feature, or to expose weaknesses (if the proof fails).
We illustrate this with two examples: an informal proof that the evaluation process
always terminates, and a summary of the more formal proofs which demonstrate
that the store representation always contains unique identifiers.

7.1 Termination

One important property of a well-designed configuration language is that the eval-
uation is guaranteed to terminate, regardless of the input specification. This is not
true for most non-declarative (configuration) languages since they usually support
arbitrary computations. But it is not trivially true for declarative configuration
languages either, since recursive references (for example) can potentially lead to
no-termination (see the discussion in 9.2.1). The following theorem states that
evaluation of a SF specification always terminates:

Theorem 1 (termination) The evaluation SF J sf K of a (finite) specification sf 2

SFSpecification always terminates.

Proof Since sf is finite and data references are not resolved by any of the valuation
functions, then there are only two possible cases that can cause non-termination:
a cyclic link reference and a cyclic prototype. Thus, it is su�cient to show that the
evaluation will always terminate in these two cases.
Case 1: a cyclic link reference can occur whenever there is at least one unresolved
link reference in the store. This is impossible because the function Value in defi-
nition 6.4 immediately resolves every link reference at the time the dereferenced
value is bound to the target variable. Since cyclic link reference will be never exist,
then the evaluation will always terminate.
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Case 2: a cyclic prototype can happen whenever an object uses its parent as pro-
totype. The proof that the evaluation will always terminate in this case, is given
by example: consider the following:

1 sfConfig extends {

2 a extends sfConfig

3 }

The updates of the store during evaluation can be represented in the following
series:

1. ?S
2. hsfConfig,?Si :: ?S
3. hsfConfig, ha,?Si :: ?Si :: ?S
4. hsfConfig, ha, ha,?Si :: ?Si :: ?Si :: ?S
5. ha, ha,?Si :: ?Si :: ?S

(1) represents the initial store before evaluation, (2) is the store after evaluating
line 1, (3) is the store when evaluating line 2 but before expanding the prototype,
(4) is the store after expanding the prototype, and (5) the store after extracting
the main object. This evaluation always terminates with the store in (5) being
returned as the result.

Since the evaluation always terminates in both cases, then the statement holds.

7.2 Reference uniqueness

The choice of a list structure to represent the store (see §9.1) means that the
following proofs are required to show that the uniqueness property of identifiers is
maintained by the semantic functions. We omit the details of these proofs which
are fairly straightforward – full versions are available in [23].

Lemma 1 (put uniqueness) Assume s is a store that has unique identifiers i.e.

8hidi, vii, hidj , vji 2 s . i 6= j ) idi 6= idj . Then operator s

0 = put(s, id, v) always

returns s

0
that also has unique identifiers i.e. 8hid

0
i, v

0
ii, hid

0
j , v

0
ji 2 s

0
. i 6= j ) id

0
i 6=

id

0
j .

Lemma 2 (bind uniqueness) Assume s 2 S where s has unique identifiers, and

8si ⇢S s : si has unique identifiers. Then operation s

0 = bind(s, id, v) always returns

s

0
that has unique identifiers, and 8sj ⇢S s

0 : sj has unique identifiers as well.

Theorem 2 (store uniqueness) Assume a specification sf 2 SFSpecification, if

SF J sf K = s then s has unique identifiers and 8si ⇢S s : si has unique identifiers.

8 From semantics to compiler

In developing any formal semantics, there are choices to be made in both the
representation of the domain, and the semantic operations. These will depend to
some extent on the purpose of the semantics. Often, the representations will be
rather abstract and too ine�cient to be translated directly into code. But they
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may be better suited to proving properties of the language (for example), and be
more independent of the implementation technique.

Our formalisation of the SF semantics was largely motivated by the need for
a new implementation of the compiler to support additional features related to
the planning of configuration changes [23]. We wanted this to be compatible with
the current production compiler (in the common features). We therefore chose a
rather concrete representation. We were able to translate this fairly directly into a
reference implementation. This means that it is easier to have confidence that the
compiler is correct (with respect to the semantics), and the process itself is more
familiar to users without a formal background.

8.1 Compiler implementation

The semantics was initially developed in parallel with the implementation of a
demonstration compiler (written in Scala). In order to evaluate the results, two
further compilers were then implemented independently, in di↵erent languages
(Haskell and OCaml), by di↵erent people. These implementations were created
directly from the semantics, without the use of any additional SF knowledge. All
of the code for these compilers is available from [4].

The use of functional programming languages allowed us to make a very direct
translation from the formal semantics into the core of the compiler code. Figure 5
show a typical evaluation function and its translation into Haskell. The compiler
requires less than one page of code for the core semantics, and a further page for
the supporting functions.

V JLR K , � (ns, r, s) .
if v0 = ? then err5 else bind(s, r, v0)

where hns0, v0i = resolve(s, ns,LR JLR K)

1 evalValue (LinkValue lr) =

2 \(ns,r,s) -> do

3 (ns’,v’) <-

4 case (sfResolv(s,ns,lr)) of

5 Nothing -> Left ENOLR(lr)

6 Just (n,v) -> Right (n,v)

7 sfBind(s, r, v’)

Fig. 5: Example translation of a semantic function into Haskell code.

8.2 Compiler evaluation

To validate the correctness and compatibility of the compiler implementations, we
created a framework to compile the same source files with multiple compilers and
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compare the output. We tested both manually created, and randomly-generated
specifications.

The manually-created tests were mostly small, targeted examples, designed to
exercise specific features of the language - both syntactic, and semantic. These
included tests for all expressible errors, as well as correct specifications (see ap-
pendix B for some examples). All test files are available with the compiler source
[4].

Haskell’s QuickCheck [17] package was used to produce randomly-generated,
syntactically correct specifications for testing. However, almost all of these spec-
ifications initially included semantic errors such as references with missing or in-
appropriate targets. While it is useful to test for compatible handling of these
invalid specifications, we wanted to generate a significant number of valid con-
figurations. We therefore created custom QuickCheck generators which used the
semantic functions as a guide to produce mostly correct specifications. As well as
providing a further illustration of the application of the semantics, this created
a large number of very complex, correct configurations (see appendix C for an
example). We tested our implementations using multiple QuickCheck runs of 100
such examples.

This comparison process identified a small number of implementation errors.
All but one of these were related to non-semantic issues: for example, a mistake
in the parsing which failed to allow empty blocks, and di↵ering interpretations of
the #include directive (which is not formally specified). The one semantic error
involved the ordering of store items, which is discussed below (§9.1). We consider
this to be a very promising result.

We also used the above process to compare our compilers to the production
SF compiler. However, the current production compiler supports a wider range
of features, and a slightly di↵erent semantics (which requires multiple passes).
This means that many of the automatic tests, were not appropriate. Nevertheless,
this process identified some issues with the production compiler (including a non-
termination problem). It also highlighted a misunderstanding of the semantics
which we corrected in our semantics and implementations.

9 Discussion

The development of the semantics, and its subsequent use in the implementation,
highlighted several interesting issues with the process itself, the SmartFrog lan-
guage, and the design of configuration languages in general. This section discusses
some of these in more detail.

9.1 Store order

It was initially very unclear whether the order of the items in the store was sig-
nificant or not, and if so, how that order should be determined. If the order were
not significant, then it would be more appropriate to represent the store in terms
of sets, or more abstractly as a function S : I ! V?

3. However, it appears that

3 This is equivalent to a map data structure.
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practical use of the language often relies on the item order, as determined by the
current production implementation. We faithfully replicated this order in the se-
mantics by using the list representation for the store. However, this complicates the
semantic functions, and it necessitates some additional proofs (§7.2) to guarantee
the integrity of the store.

In theory, it may be preferable to insist that the user specify the ordering where
this is significant. However, it would still be desirable for an implementation to
produce a deterministic ordering, in which case users may be tempted to rely on
this, and di↵erent orders from di↵erent implementations would very likely to lead
to portability problems. This suggests that a fully-specified order is preferable.
This is discussed further in the context of a real example in section §10.

Technically, the JSON standard explicitly declares the order of the key-value
entries to be indeterminate. However, we will continue to use this as a convenient
format for representing the store contents, assuming an implied resource order
equivalent to the order in which the the JSON attributes appear. YAML supports
mapping types which preserve the key order.

9.2 References

The treatment of references is probably the most complex part of the SF language.
There are several possible interpretations, and the choice among these a↵ects the
language in subtle ways:

– SF resolves references relative to the current component. It is only possible to
refer to items in a sub-component – not in a higher-level component.

– SF supports references both on the right-hand side of an assignment (a link

reference), and on the left-hand side (a placement).
– The production SF compiler currently supports “forward references”. These are

not supported by the semantics presented in section §6. The prototypes shown
in figure 7 and figure 9, for example, are both illegal under our semantics. This
is discussed in more detail below.

The discussion of references is a good example of the ability a formal seman-
tics to highlight di�cult areas of the language. The corresponding functions are
more intricate, and the forward reference extensions complicate the semantics con-
siderably. This makes the specifications more di�cult for humans to understand,
and hence more error-prone. It also leads to potential errors in the implementa-
tion. The use of the semantics to pinpoint these problems can be very helpful in
designing improvements to the language.

9.2.1 Forward references

Technically there is no loss of functionality in prohibiting forward references, since
mutually recursive prototypes are not necessary, and the source code can always
be re-ordered to remove them. However: an important feature of configuration
languages is the ability for di↵erent people to independently author di↵erent parts
of a specification which are then composed into a final configuration. Most current
languages have no explicit support for this, so it is typical for a specification to
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simply include the text of sub-specifications written by other people (using #in-

clude). In many cases there may be no possible inclusion order which satisfies the
requirement to define all prototypes before they are referenced. This dependence
on ordering to define composition semantics is a common problem for configuration
languages.

1 // server.sf

2 sfConfig:server extends {

3 port 1234;

4 ...

5 }

1 // main.sf

2 #include "server.sf"

3 sfConfig extends {

4 client extends { ... }

5 client:port server:port;

6 ...

7 }

Fig. 6: Included files.

For example: figure 6 shows the file server.sf which is intended to be included
in a main configuration to add some parameters specifying a particular kind of
server. The main configuration also includes a client which is configured to have the
same port as the server. There is no position in the main file where server.sf can
be included without a forward reference (the example shown is not valid because
server.sf makes a forward reference to sfConfig). This is one motivation for the
forward reference support in the current production compiler.

9.2.2 Forward link references

1 sfConfig extends {

2 a b;

3 b 1;

4 c a;

5 }

Fig. 7: A forward link reference.

Supporting forward link references requires an additional pass of the compiler
and a significant increase in the complexity of the semantics. An extended version
of the semantics which supports this is available in [23]. It is interesting that the
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development of this extension identified an issue with the production compiler
which failed to terminate on specifications of the form shown in figure 8. This has
been corrected in the extended semantics, together with a corresponding extension
to the termination proof given in theorem 1.

1 sfConfig extends {

2 comp1 extends {

3 comp2 comp1;

4 }

5 }

Fig. 8: Non-termination.

9.2.3 Forward placement

1 sfConfig extends {

2 a:b extends {

3 c 2;

4 }

5 a extends {

6 b 1;

7 }

8 }

Fig. 9: A forward placement.

Supporting forward placement is more di�cult. The production SF compiler
uses three passes to perform this and we have not attempted to provide a cor-
responding semantics. This also requires invalidating certain expressions such as
figure 10 which are legal in the basic semantics provided above – since line 4 is now
deferred to a later pass, “a” will have the value 1 rather than being a component
by the time this line is evaluated.

The apparent di�culty of the semantics in this case is not a limitation of the
technique, but rather a helpful indication that the process we are attempting to
describe is inherently complex. This feature was added to the SmartFrog language
to address some pragmatic issues, but it introduces an awkward, non-intuitive
behaviour and highlighting this helps to motivate the search for a better solution
to the original problem.
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1 sfConfig extends {

2 a extends {

3 b extends { c 1; }

4 }

5 a:b:c 3;

6 a 1;

7 }

Fig. 10: Ambiguous forward-placement.

9.3 Inheritance

As noted at the end of section §3, there are several possible interpretations of
prototype inheritance – see figure 11 and the resulting configuration in figure 12,
for example.

1 p1 extends {

2 q1 1;

3 q2 2;

4 q4 extends { a 1; b 2; }

5 }

6 sfConfig extends {

7 p2 extends p1, {

8 q1 2;

9 q3 3;

10 q4 extends { b 3; c 4; }

11 }

12 }

Fig. 11: Prototype inheritance.

1 p2:

2 q1: 2

3 q2: 2

4 q4:

5 b: 3

6 c: 4

7 q3: 3

Fig. 12: Prototype inheritance evaluated.
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The values of q1, q2 and q3 seem to be fairly natural, but q4 demonstrates
the shallow composition semantics defined by the inherit function (definition 18).
Recursive composition of the sub-prototypes would be a plausible alternative se-
mantics (i.e. q4 { a: 1, b: 3, c: 4 }), and there has been some discussion of
adding a merge operator to the language to support this.

In the case of multiple inheritance, the order in which the prototypes are listed
also determines the order in which they are composed (definition 23). This can
lead to similar ordering problems to those noted in the previous section (§9.2.1).

9.4 Applicability to other languages

As we have noted, development of a formal semantics is easiest when the con-
figuration language is small, well-defined and largely declarative. It is certainly
questionable whether it is possible to develop a useful semantics for any language
which relies heavily on exposing the underlying programming language, or on im-
perative features.

However, it is also necessary for the language to have a reasonably clear and
explicit semantic domain (§5.1). This appears be the case for SmartFrog, Pup-
pet[9] (the catalog) and LCFG[7] (the profile). Microsoft’s recent release of a de-

sired state configuration framework[8] based on PowerShell should be a particularly
good example; this compiles down to a description in DMTF MOF[5] which is
well-documented and explicitly designed as a target for multiple di↵erent tools.

One notable exception to this is the popular configuration tool cfengine[2]. This
has no explicit intermediate form, and the specifications are interpreted directly,
resulting in immediate changes to the actual state of the running system. This
involves imperative operations (including arbitrary system commands), and the
ability to read and write the persistent state of the entire machine (arbitrary files),
as well as the state of the running processes. This makes it much more di�cult to
provide a meaningful (denotational) semantics for the cfengine language, despite
its apparently declarative nature.

Some languages are more focussed on deployment, so that the translation of
the source language into the intermediate form is less important than the deploy-
ment of the resulting configuration (the semantics of the deployment process is
a di↵erent problem which we do not address). However, as systems become more
complex, we expect the demand for richer descriptions and associated source lan-
guages to increase - this may involve extensions to existing languages or additional
preprocessing (for example [31]) which should both be suitable candidates for a
formal semantics.

We believe that the di�culty of developing a semantics correlates with the
di�culty in understanding and predicting the system behaviour. So this is a useful
indicator of the clarity and usability of the language, rather than a limitation of
the technique.

10 A real-world example

The examples presented in the previous sections have been rather abstract, with
the intention of isolating specific features of the language and not obscuring these
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with unnecessary detail. In this section, we present a more realistic example which
shows how the language might be used in practice, and how uncertainties about
the semantics can lead to genuine confusion in the context of a large production
system.

We have based this example on a real use case, but created a composite to
illustrate a number of points simultaneously:

– The example is based on real configurations for a perimeter firewall, clearly
illustrating the security implications of configuration errors.

– We have chosen to demonstrate the potential confusion caused by uncertainty
over the store order semantics, since we initially misunderstood this aspect of
the SmartFrog language ourselves, and we would therefore expect others to
find this confusing.

– This example is based on real configurations which have been implemented
using LCFG, rather than SmartFrog. However, this allows us to compare the
handling of order semantics in the two languages and to suggest potential ways
in which the SmartFrog semantics could be modified to reduce the potential
for confusion.

10.1 The DICE iptables configuration

The School of Informatics at Edinburgh University uses LCFG to configure several
hundred machines in a research environment (DICE) with very diverse configura-
tions. Configurations for individual machines are constructed by composing many
configuration classes which determine (among other things), the “holes” (protocol
and port numbers) which each machine requires in the perimeter firewall. These
are collated into a single specification of about 4500 rules which form part of the
configuration of the firewall system itself.

The firewall system uses the iptables software[6] which is configured with this
list of rules to define which connections from the outside world (by protocol and
port number) are permitted to each of the machines on the internal network. The
iptables rules support many options, but the basic principle is to accept or deny

connections between specified sources and specified destinations. For example, the
following rules would accept all (tcp) connections on port 22 to any host on the
“production network” (defined by variable PROD NET), and deny any attempt to
connect to this port of any other machine:

1 -A INPUT -s ${PROD_NET} -p \

2 tcp --destination -port 22 -j ACCEPT

3 -A INPUT -p tcp --destination -port 22 -j DENY

Crucially, the order of the rules is important: the first matching rule in the chain
is used, and the following rules are ignored. If a connection to the production
network is permitted by the first rule in this example, then the second rule is
ignored.

In the following examples, we will show only the significant rule options, in a
simplified format. For example:



28 Paul Anderson, Herry Herry

1 -s SOURCE -ADDRESS -p DESTINATION -PORT ACCEPT/DENY

10.2 Configuration classes

The configuration for a large system will typically establish a hierarchy of proto-
types which can be inherited by individual machines depending on their function
(class). For example, a particular service may be provided on two di↵erent ports,
one for the “public” version of the service (defined by variable PUB PORT), and a
di↵erent one for a “private” (defined by variable PRIV PORT), or test version. Figure
13 shows a prototype for a default configuration which blocks access to both of
these from everywhere.

1 default extends {

2 public "-p ${PUB_PORT} DENY";

3 private "-p ${PRIV_PORT} DENY";

4 ...

5 }

Fig. 13: A default prototype.

Di↵erent classes of machines may then override parts of this prototype, de-
pending on their function. For example, figure 14 shows how a production server,
may allow access to the production service (and inherit the default access to the
private service):

1 prodServer extends default , {

2 public "-p ${PUB_PORT} ALLOW";

3 ...

4 }

1 prodServer:

2 public: "-p ${PUB_PORT} ALLOW"

3 private: "-p ${PRIV_PORT} DENY"

4 ...

Fig. 14: A prototype for a production server with corresponding compilation out-
put.

Figure 15 shows a prototype for a development server which may allow access
to the private service, but only from machines on the “development network”
(defined by variable DEV NET), and inherit the default access to the public service:
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1 devServer extends default , {

2 private "-p ${PRIV_PORT} -s ${DEV_NET} ALLOW";

3 ...

4 }

1 devServer:

2 public: "-p ${PUB_PORT} DENY"

3 private: "-p ${PRIV_PORT} -s $(DEV_NET) ALLOW"

4 ...

Fig. 15: A prototype for a development server with corresponding compilation
output.

Figure 16 shows the configuration for a test server which has specific require-
ments. Note that the public access is exactly the same as the default, so the
configuration would be identical even if this line were removed. However, the in-
tention here is clearly to make sure that public access is denied, even if the default

is later changed. This is important since the second line permits access on all all
ports from the development network.

1 testServer extends default , {

2 public "-p ${PUB_PORT} DENY";

3 private "-s ${DEV_NET} ALLOW";

4 ...

5 }

1 testServer:

2 public: "-p ${PUB_PORT} DENY"

3 private: "-s ${DEV_NET} ALLOW"

4 ...

Fig. 16: A prototype for a test server with corresponding compilation output.

Note that all of these prototypes are likely to include values for many other
attributes. We have indicated this here with “...”, but we will omit this in future
for clarity.

10.3 Unintended consequences

Imagine that the default prototype is now changed so that access to the private
service is permitted by default from the development network (figure 17).

Notice that public access continues to be denied by default, but the rule or-
der has been changed to permit access to the public port from the development
network.
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1 default extends {

2 private "-s ${DEV_NET} ALLOW";

3 public "-p ${PUB_PORT} DENY";

4 }

Fig. 17: A new default prototype.

The new behaviour of the production and development servers is fairly clear,
and seems reasonable: in particular, the rules specified in the devServer and prod-

Server prototypes are still honoured. However, the testServer prototype (which
has not changed) explicitly specifies both rules, with the clear intention that these
should take precedence over any defaults. But figure 18 shows the resulting con-
figuration, which is now di↵erent from the previous configuration (figure 16).

1 testServer extends default , {

2 public "-p ${PUB_PORT} DENY";

3 private "-s ${DEV_NET} ALLOW";

4 }

1 testServer:

2 private: "-s ${DEV_NET} ALLOW"

3 public: "-p ${PUB_PORT} DENY"

Fig. 18: The configuration specification and the compilation output of the test
server after the change to the default prototype.

The SmartFrog ordering semantics means that, although the values are over-
ridden, the order is still inherited from the default prototype, so the attributes
will now appear in the reverse order from that shown in the testServer prototype.
This change in e↵ective order is very non-intuitive, and in this case, produces a
non-obvious security vulnerability – access to the public port is now allowed from
the development network.

This may appear to be contrived example, but this is exactly the type of
misunderstanding which can occur in practice, and can be very di�cult to identify.
And the context here has been considerably simplified – in practice, this would be
part of configuration with thousands of firewall rules, a more complex inheritance
hierarchy, and thousands of other parameters.

10.4 Mitigating the problem

As previously noted (§9.1), there is no obviously “correct” way to handle order-
ing. Generating a deterministic order from the composition of the prototypes will
always lead to some cases such as the above which are extremely non-intuitive. A
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non-deterministic order is equally problematic, because users may unintentionally
come to depend on the specific ordering generated by a particular implementation.

However, the formal semantics clearly highlights problems such as this, provid-
ing an opportunity to mitigate them at the language design stage. For example,
LCFG supports an additional meta-attribute which can be used to specify con-
straints on the (partial) ordering of the other attributes[14, 53-54]. Figure 19 shows
how a similar feature might be incorporated into SmartFrog (using a hypothetical
syntax).

1 default extends {

2 order private < public;

3 private "-s ${DEV_NET} ALLOW";

4 public "-p ${PUB_PORT} DENY";

5 }

6
7 testServer extends default , {

8 order public < private;

9 public "-p ${PUB_PORT} DENY";

10 private "ALLOW -s ${DEV_NET}";

11 }

Fig. 19: Hypothetical explicit ordering constraints.

The order attribute can be inherited in exactly the same way as the other
attributes. The order of the attributes in the final configuration will conform to
the corresponding ordering constraints, ignoring the order in which the attributes
appear in the source (the order will be indeterminate where it is not constrained).

A lighter-weight approach may be to generate a warning (or even an error)
from the compiler when the order of the compiled attributes is di↵erent from the
order in which they appear in any particular prototype. However this may lead
to small changes in the source producing many warnings, and may not identify
more complex instantiations of the problem which result from the interaction of
multiple inherited prototypes. Having a stronger type-system which defined the
attribute order for any specific type would also clarify the issue, but would not
permit the flexibility to change the ordering dynamically, as required in the above
example.

11 Conclusions & further work

We have demonstrated that a declarative configuration language, developed us-
ing a more rigorous approach, can yield many of the benefits described in the
introduction. In particular:

1. The formal semantics can be used to guide the practical implementation of a
compiler for a real configuration language (§8).
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2. This supports the creation of independent implementations with a high degree
of confidence in their compatibility (§8.2).

3. And it enables the creation of other types of inter-operable tool, such as the
compatibility testing tool (§8.2).

4. It also allows us to prove important properties of the configuration, increasing
reliability and security (§7).

5. And the overall process leads to a deeper understanding of the language which
exposes ambiguities, potential problems, and alternative interpretations (§9,§10).

It should be noted that the di�culties associated with the development of the
formal semantics fall only on the language designer, and not on the user of the
language who simply benefits from the improvements noted above. As configu-
ration languages become more widely and heavily used, it becomes increasingly
worthwhile to invest e↵ort at the language design stage to improve the utility of
the language for the end-user.

It has not been an explicit aim to evaluate the SF language itself – either in
terms of design, or implementation. However, development of the formal semantics
has considerably increased our understanding of the language, highlighted di�cult
areas, and identified problems with a production implementation. This has been
a valuable guide to the practical development of language extensions and the
corresponding compiler.

Although SmartFrog is a comparatively simple language, we have shown that
apparently small extensions can have subtle, but significant consequences which
can make the language more di�cult to understand, error-prone, and complex to
implement. There is a tendency for popular, practical configuration languages to
change and acquire new features more regularly, in ad-hoc ways, and we suspect
that these would benefit from a similar semantic analysis.

In the future, we would like to perform a similar analysis of other configuration
languages. We are also planning to use the formal semantics as a basis to explore
aspects such as provenance [15] in configuration languages.
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Appendix A: Concrete syntax

SF ::= B
B ::= A B | ✏

A ::= R V
P ::= R | { B }

PS ::= P (, P)⇤ | ✏

V ::= BV ; | LR ; | extends PS
R ::= I (: I)⇤

DR ::= DATA R
LR ::= R
Vec ::= [ ( BV (, BV)⇤ | ✏ ) ]
Null ::= NULL

Bool ::= true | false

BV ::= Bool | Num | Str | DR | Vec | Null

Appendix B: Manually created tests

The following examples show some of the manually-created test cases:

1 /*

2 * syntactic features

3 */

4 blob 34 ; a:b NULL; x23 "stuff"; _boolvar false;

5 p extends { q 2; } proto extends p:q

6 myref DATA x:y:zzz;

7 v [true ,95,[1,2],"foo"]; // eol comment

1 // a test for references

2 sfConfig extends {

3 A extends {

4 A extends {}

5 B 11;

6 A:X extends { C 22; }

7 D 33;

8 }

9 }

1 // error 4

2 sfConfig extends {

3 P "oops";

4 Q extends P, { test 2; }

5 }
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Appendix C: Auto-generated tests

The following SF code is part of a randomly-generated, semantically-correct spec-
ification used for testing compatibility between the implementations:

1 e extends {

2 g 1234;

3 e:g e:g;

4 h e:g;

5 }

6 q e:g;

7 m false;

8 b extends {

9 d e:g;

10 }, {

11 b b:d;

12 e:h DATA h;

13 r "string";

14 }

15 g extends {}

16 e:g e:h;

17 e extends {}

18 b extends {

19 x "noref";

20 b:x extends {

21 s extends {

22 j 1234;

23 }

24 v extends {

25 r extends {

26 r b:x:v:r;

27 }, {

28 a extends {

29 d extends {

30 b true;

31 }

32 }

33 h b:x:v;

34 y 1234;

35 }

36 f extends b:x:v:r:a:d,

37 b:x:v:r:h

38 }

39
40 ... 200+ lines omitted ...
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