Choreographing configuration changes

Herry Herry*, Paul Anderson', and Michael Rovatsos!
School of Informatics
University of Edinburgh
Edinburgh, UK
*h.herry @sms.ed.ac.uk, Tdcspaul@ed.ac.uk, !mrovatso@inf.ed.ac.uk

Abstract—This paper describes the automatic generation of a
set of reactive agents capable of autonomously reconfiguring a
computing infrastructure into a specified goal state. The agent
interactions are guaranteed to be deadlock/live-lock free, can
preserve pre-specified global constraints during their execution,
and autonomically maintain the goal state once it has been
achieved. We describe novel algorithms for the generation and
execution of the agent model, and evaluate the results on some
realistic problems, using a prototype implementation.

I. INTRODUCTION

We have previously shown [1] that automated planning
techniques can be used to generate the workflows necessary
to reconfigure large computing installations. These workflows
ensure the achievement of the required, declarative goal
state, and guarantee the maintenance of any necessary global
constraints throughout the reconfiguration. In our previous
work, the workflows were orchestrated by a central controller.
However, this creates a potential bottleneck in large systems,
and can also be unreliable if the communication with the
controller is disrupted, which is particularly relevant since
reconfiguration frequently occurs as an autonomic response
to system failures.

Fully distributed planning, on the other hand, is not a good
solution to this problem either — avoiding deadlock/livelock
may require agents to have considerable global knowledge
and achieving such global knowledge is likely to result in
even more costly inter-agent communication. Predicting the
behaviour of such systems is also more difficult and hence they
are less acceptable to system administrators in real situations.

In this paper, we present a novel solution which aims to
avoid the drawbacks of both these extremes: the workflow
generated by the planner is used to automatically construct a
set of purely reactive agents which choreograph the execution
of the workflow without the need for a central controller. This
combination of centralised planning with distributed execution
provides robust, autonomous execution while retaining the
advantages of a predictable, deadlock-free workflow. Addi-
tionally, the agents form a self-healing system by continuously
attempting to maintain the goal state. We have implemented
this process by modifying the Nuri workflow planner [1] to
generate and deploy a reactive agent model based on Be-
havioural Signatures [2], [3]. Our evaluation results show that
the Nuri agents can achieve the goal state without any central
control, while maintaining the global constraints throughout
the changes. Moreover, each agent is capable of repairing

drifts from the goal state, autonomously, and without any re-
planning process.

Section II describes the background to the problem in more
detail, and section III illustrates the proposed solution by
working through an example. Sections IV and V describe
the algorithms for the model generation and execution respec-
tively. Sections VI and VII describe the implementation and
its evaluation on some concrete examples.

II. BACKGROUND & RELATED WORK

The scale and complexity of modern computing infrastruc-
tures demand an automated approach to the management of
their configuration, and tools such as Puppet [4] and Chef
[5] are now ubiquitous. Many of these tools (Puppet, LCFG
[6], BCFG [7]) adopt a declarative approach which allows the
explicit specification of the desired end-state of the system —
the tool then computes the necessary workflow to achieve that
state. One disadvantage of this approach is that the user has
no control over the generated workflow which may contain
intermediate states that violate essential constraints [8]. An
alternative approach is to specify the workflow manually (an
approach used, e.g., by IBM Tivoli Provisioning Manager
[9], Microsoft System Center [10], Juju [11] and RunDeck
[12]) — however, this requires a separate workflow for each
initial/final state pair, and the resulting configuration needs
to be verified against the requirements for the final state.
We have previously shown [1] that a declarative approach,
combined with an automated planner, can generate workflows
which achieve the desired state while maintaining the global
constraints throughout the configuration process.

Most practical configuration tools are highly centralised
— a central controller gathers information about the state of
the system and orchestrates the workflow by communicating
directly with the systems involved at each step. SmartFrog
[2] is an interesting exception, where the components which
manage the various aspects of the system can be augmented
with Behavioural Signatures [3]. These allow the administrator
to specify a model which defines state-dependencies between
components so that a change of state in one component
may depend on changes of state in other components. This
can produce a cascade of distributed state changes with a
particular ordering constraint. Figure 1 illustrates an example
which manages a 3-tier web application deployed on several
virtual machines. Unfortunately, the dependencies must be
computed manually which is error-prone and time-consuming.

agenti (vm1) agent2 (vm2) agent3 (vm3)

db ws Ib

A installed = true ,{ installed = true A installed = true
h A h A h 4
: install : install ; install
! | installed = false | installed = false i |installed = false
% | tunning =true: |J. \ | running = true |{ %, | tunning = true

A DRRE N RN A
T----p| start TT=-Ilzo» start

T
running = false running = false

start

running = false

—» operator
---» precondition [

state] [goal state.] [current state]

Fig. 1: The Behavioural Signature model for deploying the
example 3-tier web application system.

The resulting models must also be validated for deadlock and
livelock conditions before they can be deployed.

There has been some previous work on distributed workflow
execution using multi-agent systems: [13], [14], [15] describe
a fully distributed execution framework where the workflow
is represented as interaction models of a multi-agent system,
each consisting of roles and constraints. But as with [3], the
model has to be computed manually. [16] describes a control
loop technique to monitor the execution of a workflow in
a multi-agent system. In [17], the workflow is compiled as
a compact representation based on Simple and Disjunctive
Temporal Constraints Networks. These works have a common
where the workflow is executed in progressive.

III. EXAMPLE

Assume we wanted to deploy a 3-tier web application
consisting of a load balancer, a web service, and a database
service, onto three virtual machines (VMs) on a public
cloud. Each VM has an agent that controls some compo-
nents, and manages the configuration of the VM including
the installed software. In this case, there are three agents:
agenti,agents, and agents, and there are six components:
vmy, vme, vms, b, ws, and db that manage the configuration
of VM-1, VM-2, VM-3, a load balancer, a web service, and
a database service respectively.

Although the software will be deployed independently on
different VMs, the deployment process must satisfy some
global constraints due to service dependencies:

« The web service depends on the database service: when-
ever the web service is running then the database service
must be running as well;

« the load balancer depends on the web service: whenever
the load balancer is running then the web service must
be running as well.

The following sections describe the steps required to auto-
matically deploy the example system with Nuri.

A. Modelling the System

To model the system, we use an object-oriented configura-
tion language called SFP which is introduced in [1]. SFP is a
prototype-based language that allows us to model a resource
as an object. An object has a set of attributes, each of which is
assigned a value. The state of an object is represented by the
collection of attribute-value pairs, and the union of all objects’
states represents the state of the system. An object may also
have one or more procedures, each representing the capability
of an object to change its state or another object’s state by
modifying the attribute values.

SFP also allows us to define a “loose” desired state as a
logical formula. This not only allows the administrator to work
at a higher level by defining a set of possible desired states
as a constraint, but it also affords the planner more flexibility
in searching for the best solution. In addition, SFP allows us
to define global constraints as logical formulae — these are
constraints which must be satisfied at every stage during a
sequence of reconfiguration steps.

SFP provides a notation to define a schema, which is a
contractual structure of the objects that implement it. This
ensures the consistency of attributes (name and type) and
procedures across objects conforming to the same schema. For
our example, we define five abstract schemata as follows':

schema VM { created = false }
schema Service {
installed = false; running = false
procedure install {
cost = 10
conditions { this.installed = false }

effects { this.installed = true }}
procedure start {
cost = 5
conditions { this.installed = true;
this.running = false }
effects { this.running = true }}

}

schema Database extends Service
schema WebService extends Service
schema LoadBalancer extends Service

The current state of the example system can be modelled
as follows:

vml isa VM {
created = true
db isa Database { installed = false;
running = false }}
vm2 isa VM {
created = true
ws 1sa WebService { installed = false;
running = false }}
vm3 isa VM {
created = true
lb isa LoadBalancer { installed = false;
running = false }}

The above model shows that there are three VMs: vmy, vmao,
and vmg, and each has software component db, ws, and [b
respectively. All of the VMs exist, but only one of the software
components is (yet) installed.

For brevity, we omit the procedures uninstall and stop of the Service
schema.

vm1.db.install

vm2.ws.install

|

vm2.ws.start

vma3.lb.install
vm1.db.start

vm3.Ib.start

—>» ordering constraint

Fig. 2: The workflow for deploying the example 3-tier web
application. Numbered circles contain priority index value of
a particular sub-procedure (see section IV).

B. Planning the Configuration Changes

The deployment of the example system involves a sequence
of configuration steps that select and execute procedures to
change attribute values to achieve certain objectives, moving
towards the desired state, and preserving the pre-defined global
constraints while the changes are made. To achieve this,
we employ a technique described in [1] which compiles the
above model together with the specification of goal and global
constraints into a classical planning problem. We then use an
off-the-shelf planner to generate the workflow.

Before employing this technique, we must define the con-
figuration task which consists of an initial state, a goal state,
and a global constraint. The initial state is represented by the
above model, while the goal and global constraints can be
defined in SFP as follows:

goal {

vml.db.running = true

vm2.ws.running = true

vm3.lb.running = true

}
global {

if vm3.lb.running = true then vm2.ws.running = true
if vm2.ws.running = true then vml.db.running = true

}

By compiling this configuration task to a classical planning
problem, and submitting the compilation result to the planner,
we obtain the workflow depicted in figure 2.

C. Implementing the Configuration Changes

To implement the configuration changes, the workflow is
used to automatically construct and deploy a set of dis-
tributed components which implement a Behavioural Signature
(BSig) model. These components choreograph the changes
autonomously, achieving the desired state and preserving the
global constraints while avoiding reliance on any central
controller. The details of this translation process are described
in section IV.

Figure 1 shows the generated BSig model for the example
system, based on the workflow generated in the planning step
(figure 2). In using this model, each agent applies an execution
algorithm called reactive-regression that always selects and

invokes an operator that can be used to perform a transition
toward the goal state. Before invoking an operator, though,
the agent must satisfy any preconditions by selecting and
invoking appropriate local operators, and/or sending a request
to another agent to achieve particular goals described in the
preconditions. This algorithm is described in section V

The execution of the example BSig model can be sum-
marised as follows:

1) Based on the model, agents detects a goal-flaw
i.e. wvm3.lb.running = true. It selects operator
vm3.1b.start to repair the flaw. Since this operator
has a local precondition vm3.lb.installed = true,
then agents selects operator vm3.1b.install. agents
directly invokes this operator since its precondition
has been satisfied. Afterwards, agents sends a goal
request to agents to satisfy a remote precondition

true, and waits for the reply.

2) Concurrently, agenty detects a goal-flaw i.e.
vm2.ws.running = true. It selects operator
vm2.ws.start to repair the flaw. Since this operator
has a local precondition vm2.ws.installed = true,
then agents selects operator vm2.ws.install. agents
directly invokes this operator since its precondition
has been satisfied. Afterwards, agents sends a goal
request to agent; to satisfy a remote precondition
vml.db.running = true, and waits for the reply. In
this step, it postpones agents’s request since it has not

VM2 .ws.running =

yet achieved state vm2.ws.running = true.
3) Concurrently, agent; detects a goal-flaw i.e.
vml.db.running = true. It selects operator

vml.db.start to repair the flaw. Since this operator
has a local precondition vml.db.installed = true,
then agent; selects operator vml.db.install. agenty
directly invokes this operator since its precondition has
been satisfied. Afterwards, agent; invokes operator
vml.db.start since its preconditions have been
satisfied. Since it receives a request from agents, it
sends an acknowledgement.

4) agents recevies a success reply from agents and will
continue to invoke operator vm2.ws.start since its
precondition has been satisfied. Afterwards, it sends an
acknowledgement to agent.

5) Since agent; receives a success reply from agents,
it continues to invoke operator vm3.lb.start as its
precondition has been satisfied.

6) The execution of operator ends here since all agents have
achieved their goals.

The sequence diagram of this execution is available on: http:
/Mhomepages.inf.ed.ac.uk/s0978621/cnsm13/sequence.pdf.

In executing the model, each agent is communicating purely
peer-to-peer with other agents. Communication is initiated
when an agent needs to invoke an operator which has precon-
ditions which can only be satisfied by other agents. Based on
the replies, an agent can decide whether the selected operator
may be invoked or not.

IV. CHOREOGRAPHING THE MODEL

The choreography aims to define a “global scenario” which
should be executed by all agents during configuration changes
without any single point of control. This global scenario is a
workflow generated by the planning step. If only one agent is
involved in this scenario, then the execution can be performed
sequentially in a straightforward way. If, however, the scenario
involves more than one agent, then it must be split up into local
scenarios for each agent. We refer to each of these as a local
BSig model which defines the agent’s local goal and specifies
which local changes can be made under what circumstances.
We will refer to the goal of a single agent as a local goal, and
to the goal of the whole system as the system goal.

A. Local Goal

Each local model may have a goal state, which can be
defined as follows:

Definition 1: A local goal g of an agent is defined as a set
of variable assignments, each of the form v = d, where v is a
combination of variable name and namespace and d is a value.

For example, the workflow in figure 2 involved three
prOCCdureSIvml.db.start,vm2.ws.start,and vm3.lb.start.
They support the system goal states vml.db.running = true,
vm2.ws.running = true, and vm3.lb.running = true, I€-
spectively. From the namespace of those procedures and the
goals they support, we can determine that

® Jagent; — {vml.db.running = true},

® Jagents Ii{vm2.ws.running = true},and

® Jagents =:{vm3.lb.running = true}

In this case, we could have achieved the same result by only
considering the namespace of each variables of the system
goal state, however there are some situations where this is
insufficient. For example, assume that we have two agents
agent, and agent,, and the first agent controls the creation
of a new VM on a public cloud infrastructure through pro-
cedure cloud.create_vm. The second agent controls a virtual
machine vm,,, but does not have the VM creation capability.
This implies that a goal of vmy.created = true should be
assigned to agent, instead of agent,,.

B. Local Operators

Each local BSig model may also have a set of local
operators that determine what local changes can be made
when. The definition of such a local operator is as follows:

Definition 2: A local operator o; of a Behavioural Signature
model is defined as a 4-tuple 0; = (name, pre, post, p) where:

e name is a combination of namespace with operator name,
o pre and post are the precondition and postcondition of
the operator, each of which is a set of pairs v = d
assigning value d to variable v,
e pis an integer value that represents the priority index of
operator 0; compared to other operators.
The local operators of each agent can be obtained from
the workflow by considering the namespace associated with
every procedure. For example, procedure vm2.ws.start of the

workflow in figure 2 has namespace vm2.ws. By considering
this namespace, we can assign the procedure to agent o as
one of its local operators.

Each local operator should have a precondition, which is a
partial state description that must be satisfied before executing
the operator, and a postcondition (a partial description of the
state after execution). This information can be obtained from
two sources: the grounded procedure specification and the
ordering constraints of the workflow. In our example, based on
procedure start of schema service inherited from component
ws of vme, the precondition and postcondition of operator
vm2.ws.start are’:

« precondition:

{vm2.ws.running =
 postcondition:

{vm2.ws.running = true}

false,vm2.ws.installed = true}

Based on the workflow’s ordering constraints (shown as arrows
in figure 2), procedure vm2.ws.start must be executed after
vm2.ws.install and vml.db.start. Both predecessor proce-
dures have the following postconditions:
e postcondition of vm2.ws.install:
{vm2.ws.installed = true}
¢ postcondition of vml.db.start:
{vml.db.runninq = true}
To ensure that the ordering constraints are satisfied, these post-
conditions are added to the preconditions of vm2.ws.start.
Thus, its final precondition and postcondition are:
« precondition:

{vm2.ws.runninq = false,vm2.ws.installed = true,

vml.db.running = true}
 postcondition:
{vm2.ws.running = true}

As shown above, this technique injects some additional con-
straints into a particular operator’s precondition in order to
maintain the global constraint during execution. This ensures
that the model is free of global conflicts, even though its
execution is distributed.

During execution, an agent may have a choice of more
than one operator that can be selected to repair some flaws,
i.e. violated goal conditions. Instead of selecting an arbitrary
operator, the agent should select one of the operators that
has the lowest priority index. The index of every operator
is obtained by taking the maximum of its successor operator
indices and incrementing this value by one (operators without
successors are assigned an index of 1). i.e:

. 1 if Suce; =0
pi(oj) = { maz(pi(Succj)) + 1 if Succj S| M

where Swucc; is the set of successor operators of o;. For the
workflow in our example system, the values in the circles in
figure 2 represent the priority index of the operators involved.

Priority index values are very important because they reflect
the ordering constraints between operators as specified by the

2The keyword this in a SFP procedure refers to the parent object of the
procedure.

workflow generated by the planner. Our execution algorithm
will use these priority index values to ensure that there is no
deadlock or livelock situation during execution.

C. System BSig Model

To complete our definition of the overall configuration
model, we can now define the BSig model of the whole system
M is the union of all local models involved:

Definition 3: A local model is a tuple m; = (u;, 9:, O0;),
where g; is the local goal, O; is a set of local operators of
agent;, and fi; is the model’s serial number?

Definition 4: A Behavioural Signature model of a system
is a tuple M = (A, M), where A is a set of agents,
M = Uyage aimag}, and Vm;,m; € M. p; = p;.

To create this model manually would involve defining the
precondition of each operator in order to preserve global
constraints, and then proving that 1) the model would achieve
the desired state, 2) the model would preserve the global
constraints, and 3) there is no potential deadlock or livelock.
These properties could be verified using model checking
techniques, but any issues would need to be diagnosed and
corrected manually. Since we generate the model automatically
from the workflow, these properties are satisfied by definition.

V. EXECUTING THE MODEL

A model M = (A, M) is deployed by sending each local
model m; € M to agent; € A. Each agent that receives a
local model will stop execution of any current model, and
start to excite the received one.

To execute the model, we uses a novel algorithm called
reactive regression. It is reactive since it continuously tries
to find and repair the flaws in the local model by comparing
the local goal with the current state. It involves regression
because it always tries to select and invoke the nearest op-
erator to the goal state in order to repair existing flaws, and
recursively invokes other local operators and/or sends a new
goal to another agent in order to satisfy the precondition of
the selected operator. In other words, the algorithm tries to
execute the workflow using a distributed backward-chaining
method, which may produce distributed, cascading effects
of configuration changes if the execution involves multiple
agents.

Each agent performs this algorithm using one main thread
and a set of satisfier threads. The main thread is responsible
for continuously finding and repairing any goal flaws. The
satisfier threads are responsible for receiving and achieving a
goal from another agent, and sending back information about
their local status.

After receiving a local model m = (u,g,O), the agent
will start a main thread by invoking method ExecuteModel as
specified in algorithm 1. First, it loads the serial number g,
the local goal g and local operators O from available local

3The serial number is used by the agents to ensure that they only
communicate with other agents who are running the same version of the
model.

Algorithm 1 ExecuteModel

: // main thread
. global stopped + false
: i, g, O < GetLocalModel()
while stopped = false do
if GetActiveSatisfierThread() = () and
AchieveLocalGoal(u, g, O, 1) = failure then
6 stopped < true
7: return failure
8
9

end if
- end while

Algorithm 2 AchieveLocalGoal(p, goal, O, m)

. current < GetLocalCurrentState()

. flaws < ComputeFlaws(goal, current)

. if flaws = () then return no-flaw end if
operator < SelectOperator(flaws, O,)

: if operator = None then return failure end if

. // at this step: operator.prioritylnder >=m

. if operator.selected = true then return ongoing end if
: operator.selected < true

7' < operator.priorityInder + 1

 Prélocals PTeremote <— SplitPreconditions(operator)
: repeat

© ® N U A W N~

—_ =
—_ o

12 status = AchieveLocalGoal(u, prejocar, O,)
13: until status = no-flaw or status = failure
14: if status = failure or

AchieveRemoteGoal(t, preremote, ™) = failure or
Invoke(operator) = failure then

15: operator.selected < false

16: return failure

17: end if

18: operator.selected < false

19: return flaw-repaired

model (line 3). Lines 4-9 show a loop where the main thread
continuously tries to achieve the local goal, unless there is
a goal request sent by another agent being processed by a
satisfier thread (line 5). This will allow the agent to achieve
an intermediate (requested) goal first, and then continue to
achieve its own local goal.

Method AchieveLocalGoal in algorithm 2 is called by the
main thread to achieve the local goal, or a satisfier thread
to achieve a requested goal. This method is reactive because
it directly selects and invokes an operator to repair any goal
flaws. First, it compares the given goal with the current state
to find goal flaws (lines 1-2). If such flaws exist, it searches
all applicable operators from O with priority index higher or
equals than a given value (7), and then selects an operator
with the lowest priority index (line 4). This selection based
on priority index aims to maintain the ordering constraints as
specified in the workflow. If there is no applicable operator,
then the goal cannot be achieved and status failure is returned
(lines 5). If the selected operator is being executed by another

Algorithm 3 AchieveRemoteGoal(1, goals, 7’)

SFP Model,
Goal, and

1: goals’ < SplitGoalsByAgent(goals) (i Global

2: for each (agent, goal) in goals’ do Administrator [constraints

3: response < SendGoalToAgent(agent, i, goal, ') v

4: if response # success then return failure end if [Planner |«—>{Choreographer

5: end for Agent Rl ¥

6: return success , e

JSON
. 1| Agent ‘,o' / X \“4 Agent [T

Algorithm 4 ReceiveGoalFromAgent(agent;, ti;, goal;, m;) | Daemon | | Daemon |

1. // satisfier thread ¢ ¢

2: global stopped H| Component Component M

3: 11,9, O < GetLocalModel() | SFP Object | | SFP Object |

4: if p; < p then))

5: SendResponseTo(agent;, denied) | Ruby Object | | Ruby Object |

6: else

Shell Resource Shell Resource

7: repeat Commands | | Ruby API Commands | | Ruby API

8: status < AchieveLocalGoal(u, goal;, O, ;) = =

9: until status = no-flaw or status = failure - L

10: if status = no-flaw then Fic. 3: Th hitect £ Nuri fieuration tool
" SendResponseTo(agent;, success) ig. 3: The architecture of Nuri configuration tool.
12: else if status = failure then

13: SendResponseTo(agent;, failure)

14: end if VI. IMPLEMENTATION

15: end if We have integrated these choreography and reactive-

thread, then it returns an ongoing status value (lines 7), so that
the thread can wait until the execution has finished. Otherwise,
the selected operator will be invoked after its local and
remote precondition has been satisfied. A local precondition
is achieved by recursively calling the same method where the
operator’s local precondition and priority index are passed as
arguments (lines 11-13). A remote precondition is achieved by
calling method AchieveRemoteGoal (line 14).

Method AchieveRemoteGoal in algorithm 3 separates the
remote preconditions based on the target agents (line 1). It
sends the new goal to each agent (line 3), and then wait for
its response. A success response means that the goal has been
achieved, other it cannot be achieved (lines 4). This response
determines whether the selected operator can be invoked or
not.

Any requested goal sent by another agent is received by
a satisfier thread that directly invokes method ReceiveGoal-
FromAgent in algorithm 4. This method has three parameters
i.e. a remote agent that sends the request (agent;), remote
agent’s model serial number (u;), the requested goal (goal;),
and the minimum priority index of the next selected operator
(m;). In lines 4-5, it checks whether the remote agent uses
an expired model. If it does then a denied message is sent
to the requester agent. Otherwise, it repetitively calls method
AchieveLocalGoal to achieve the requested goal. If the goal
has been achieved (no-flaw) then it sends back status success
(lines 10-11), or if there is a failure then it sends back status
failure (lines 12-13).

regression algorithms into the Nuri configuration tool*. Nuri
uses SFP as its configuration language. The system is imple-
mented in Ruby except for the planner component, which is
written in Ruby and C++. The Nuri architecture is shown in
figure 3.

In Nuri, each node is managed by an agent which consists of
a daemon and a set of components. The daemon is responsible
for managing the local BSig model: accepting a new model
from the choreographer, instantiating and constructing required
components based on the model, and executing the model
using the reactive regression algorithm. Each component is an
instance of a Nuri module, and is responsible for managing a
software package or a resource. A Nuri module is an abstract
component which mainly consists of two files: 1) an SFP
file that specifies a schema as an abstract description of the
resource, and 2) a Ruby file that specifies a Ruby class as the
implementation of the SFP schema. There is a clear separation
between the declarative description in SFP and its Ruby
implementation. The mapping from SFP to Ruby and vice
versa is done by a daemon that uses the Ruby-SFP library. This
clear separation allows us to have different implementations,
for example one in Ruby and another in Java, communicating
transparently using the same configuration language.

In the choreography stage, an administrator defines and
submits an SFP model with the goal and global constraints
of the managed system to a choreographer agent. Based on
the SFP model, the choreographer aggregates the current state
of the system by sending a request to each agent’s daemon
(dashed lines in the diagram). It then sends the current state

4Source code repository: https://github.com/herry13/nuri.

together with the goal and global constraints to the planner
to automatically generate a workflow. Currently, we use an
implementation of FastDownward [18] as the planner using
FF and LM-Cut heuristics in searching. With this workflow,
the choreographer constructs a system BSig model. Each local
model of the system model is deployed to the target agent
(dashed lines). The current implementation uses push-based
architecture, but it is also possible to use pull-based.

Whenever an agent’s daemon receives a local BSig model,
it stops all threads and then restarts the execution using this
new model. In execution, it calls the getStare Ruby method
of each component to get the current state of the resource.
This state is translated into SFP to be compared with the local
goal of the local BSig model to find any flaw. If any such
flaw exists, the daemon will search for a local operator of the
local model that can repair the flaw and satisfy the priority
index constraint. If an operator is found and it requires some
precondition provided by other agents, this daemon will send
the goal request to other agent’s daemon through HTTP/JSON
protocol. Whenever all operator’s preconditions have been
satisfied, the daemon will invoke a Ruby method that imple-
ments the selected operator. Afterwards, the execution result
is verified by the daemon by comparing post-invocation state
with postcondition of the selected operator.

VII. EVALUATION

We have used Nuri to deploy and reconfigure several
example systems to a public cloud. One of these is a three-
tier web application that consists of a VM with an Apache
Load Balancer, a set of VMs where each has an Apache Web
Server with Tiki Wiki Content Management, and a VM with
a MySQL Database Server. A ganglia monitoring service is
also installed and running on each VM.

In our first evaluation, we used Nuri to simultaneously
deploy two instances of the system to two public cloud
infrastructures i.e. HPCloud and Amazon Web Service (AWS),
one as the main system and the other as the backup. We varied
the number of VMs in the application layer to measure the
effect of system’s size on Nuri’s performance. To manage the
public clouds, we run two agents on our internal servers that
act as cloud proxies for each public cloud. Each agent has a
component with the capability to create and delete a VM on
particular public cloud.

These systems are deployed from scratch, which means that
there is no existing VM on any public cloud in the initial state.
For the case where each system has 5 VMs in the application
layer, the choreographer agent automatically constructed the
model in about 11 minutes and 40 seconds (dominated by the
planner). This model consists of 16 local models: 2 models for
the cloud proxy agents, 7 models for the agents of the main
system, and 7 models for the agents of the backup system. The
first 2 models were sent to each cloud proxy agent. While the 7
models of the main system was sent to HPCloud proxy agent,
and the other 7 models of the backup system was sent to AWS
proxy agent. These 14 local models were kept temporarily until
the VMs have been created and the agent’s daemon has run

on the VM. Whenever the agent daemon of a VM is available,
the appropriate local model is sent by the cloud proxy agent
to this daemon. Afterwards, the daemon executes the model
to achieve its local goal. We checked the state of the system
periodically after the model had been deployed by requesting
the current state of all agents. The outputs showed that the
number of goal flaws decreases as time passes. In about 24
minutes and 12 seconds after we submitted the SFP model and
goal and global constraints, the output showed that the system
had reached the goal state, i.e. there are two systems available
on the HPCloud and on AWS. We also checked the execution
logs of each agent and compared the invocation timestamp of
all operators. The comparison results showed that the global
constraints were not violated during execution.

Figure 4 illustrates the comparison of deployment times
of the above system using Nuri and a centralised execution
framework in [1] that uses partial-order workflow execution
engine. It shows that there is no significant difference between
these two frameworks. This is due to very low network latency
time (< ~0.15s) between the central controller with HPCloud
and AWS. We believe that the result will be different if
the network latency time is higher. However, the centralised
framework requires a controller which may be on our private
infrastructure, or on any public cloud. Obviously, if there
is a network outage on our infrastructure, or on the public
cloud that hosts the controller, then the whole execution will
be stopped. But in Nuri, the execution of the system on a
healthy public cloud will continue even if there is a problem
on the controller’s infrastructure. The grey bars show that
there is no significant difference between the planning time
for the centralised framework, and the choreographing time in
Nuri. Since our choreographing process consists of planning
and translation steps, it shows that the translation requires
insignificant time.

Finding an optimal plan is a PSPACE-complete problem
[19]. In practice, the performance of the FastDownward
planner varies according to the number of modules and the
dependencies of their procedures, as well as the complexity
of goal/global constraints formulae. The planner requires a
grounded representation of all procedures, where on most
cases the grounding process time is larger than the searching
time. As part of future work we will develop a more efficient
grounding technique.

In a second evaluation experiment, we tested the self-
healing capability of Nuri on previously deployed systems.
We manually stopped or uninstalled some services randomly
and checked the state of the system several minutes later.
Since the agent of each VM continuously executed the reactive
regression algorithm, it detected such errors as goal flaws,
selected and invoked some operators to fix them. In another,
we manually deleted some random VMs on the public cloud.
In this case, since the cloud proxy was continuously executing
its local model, it could detect that those VMs did not exist on
the public clouds. Based on the model, it then automatically
created some VMs to replace the deleted ones. After installing
and starting a Nuri daemon on each new VM, the cloud proxy

1600
1400
1200
1000
800
600
400

200
= 7= = U
[8.6,24] [10,8,32] [12,10,40] [14,12,48] [16,14,56]

Planning
E Choreographing 7
74 Centralised

= Nuri 7‘

Time (in seconds)

Number of: [Agents, VMs, Components]

Fig. 4: The deployment times using centralised framework and
Nuri.

1000 —— Centralised

—&— Nuri

800

600

400

200

Recovering Time (in seconds)

0 1 2 3 4
Number of deleted VM(s)

Fig. 5: The recovering times using centralised framework and
Nuri.

agent sent the appropriate local model to be executed on the
new VM. After several minutes, all deleted VMs had been
replaced with the new ones and the system was again stable.
These results show that Nuri can fix a drift from the desired
state by using the existing BSig model, distributively, and
without any re-choreographing process. Figure 5 shows the
comparison of recovering times using centralised framework
and Nuri. It shows that the centralised framework requires
some extra time for re-planning to generate a workflow that
fixes the drift, which is not required by Nuri.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has described a technique to compile a workflow
to a Behavioural Signature model. The evaluations show
that the execution of this model using a reactive regression
algorithm enables autonomous distributed execution, while
preserving the global constraints. This eliminates a single point
of failure and hence increases the system’s resilience. The
evaluations also show that the reactive regression algorithm
is able to synchronise the agents and maintain the ordering
constraints without the need for re-planning to fix some drifts
from the desired state.

In the current implementation, the generated model is ca-
pable of autonomic recovery from an initial state (or some
intermediate state) of the generated plan. Future work will
attempt to generalise this by merging multiple workflows to

support autonomic recovery from multiple initial states.

ACKNOWLEDGMENT

The authors would like to thank to Lawrence Wilcock and
Eric Delliot from HP Labs Bristol for their valuable feedback
and use cases. We also thank to Andrew Farrell for valuable
discussions on Behavioural Signature model. This research is
fully supported by a grant from HP Labs Innovation Research
Program Award.

REFERENCES

[1] H. Herry and P. Anderson, “Planning with global constraints for com-
puting infrastructure reconfiguration,” in AAAI-12 Workshop on Problem
Solving using Classical Planners (CP4PS’12). AAAI Press, 2012.

[2] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,
P. Murray, and P. Toft, “The smartfrog configuration management
framework,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1,
pp. 16-25, 2009.

[3] A. Farrell, S. Prakash, and J. Rolia, “Behavioral Signatures for Business
Service Management in the Cloud,” HP Labs, Tech. Rep., 2010.

[4] Puppet Labs, “Puppet,” 2013. [Online]. Available: http://www.
puppetlabs.com/puppet

[5] Opscode Inc., “Chef,” 2013. [Online]. Available: http://www.opscode.
com/chef

[6] P. Anderson and A. Scobie, “LCFG: The next generation,” in UKUUG
Winter Conference, 2002.

[7]1 N. Desai, A. Lusk, R. Bradshaw, and R. Evard, “BCFG: A Configuration
Management Tool for Heterogeneous Environments,” in Proceedings of
IEEE International Conference on Cluster Computing. 1EEE Computer
Society, 2003.

[8] H. Herry, P. Anderson, and G. Wickler, “Automated planning for
configuration changes,” in Proceedings of the 25th Large Installation
System Administration Conference (LISA ’11). Usenix Association,
2011.

[9] IBM Corp., “Integrated Service Management software, IBM Tivoli,”
2013. [Online]. Available: http://www.ibm.com/software/tivoli

[10] Microsoft Corp., “Microsoft System Center,” 2013. [Online]. Available:
http://www.microsoft.com/en-us/server-cloud/system-center

[11] Canonical, “Juju,” 2013. [Online]. Available: {http://juju.ubuntu.com}

[12] “RunDeck,” 2013. [Online]. Available: http://rundeck.org

[13] A. Barker, C. D. Walton, and D. Robertson, “Choreographing web
services,” IEEE Transactions on Services Computing, vol. 2, no. 2, pp.
152-166, 2009.

[14] P. Besana, V. Patkar, A. Barker, D. Robertson, and D. Glasspool,
“Sharing choreographies in openknowledge: A novel approach to in-
teroperability,” Journal of Software, vol. 4, no. 8, pp. 833-842, 2009.

[15] P. Anderson, S. Bijani, and A. Vichos, “Multi-agent negotiation of
virtual machine migration using the lightweight coordination calculus,”
in Proceedings of the 6th International KES Conference on Agents and
Multi-agent Systems — Technologies and Applications, 2012.

[16] R. Micalizio, “A distributed control loop for autonomous recovery
in a multi-agent plan,” in Proceedings of the 21st international jont
conference on Artifical intelligence. Morgan Kaufmann Publishers Inc.,
2009, pp. 1760-1765.

[17] J. A. Shah, P. R. Conrad, and B. C. Williams, “Fast distributed multi-
agent plan execution with dynamic task assignment and scheduling,” in
Proc. of ICAPS, vol. 9, 2009, pp. 289-296.

[18] M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, no. 1, pp. 191-246, 2006.

[19] T. Bylander, “The computational complexity of propositional strips
planning,” Artificial Intelligence, vol. 69, no. 1, pp. 165-204, 1994.

