
Automated Planning

for Cloud Service Configurations

Herry
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2015

Abstract

The declarative approach has been widely accepted as an appropriate way to man-

age configurations of large scale systems – the administrators describe the specification

of the “desired” configuration state of the system, and the tool computes and executes

the necessary actions to bring the system from its current state into this desired state.

However, none of state-of-the-art declarative configuration tools make any guarantees

about the order of the changes across the system involved in implementing configura-

tion changes.

This thesis presents a technique that addresses this issue – it uses the SFP lan-

guage to allow administrators to specify the desired configuration state and the global

constraints of the system, compiles the specified reconfiguration task into a classical

planning problem, and then uses an automated planning technique to automatically

generate the workflow. The execution of the workflow can bring the system into the

desired state, while preserving the global constraints during configuration changes.

This thesis also presents an alternative approach to deploy the configurations – the

workflow is used to automatically choreograph a set of reactive agents which are ca-

pable to autonomously reconfigure a computing system into a specified desired state.

The agent interactions are guaranteed to be deadlock/livelock free, can preserve pre-

specified global constraints during their execution, and automatically maintain the de-

sired state once it has been achieved (self-healing).

We present the formal semantics of SFP language, the technique that compiles SFP

reconfiguration tasks to classical planning problems, and the algorithms for automatic

generation and execution of the reactive agent models. In addition, we also present

the formal semantics of core subset of SmartFrog language which is the foundation

of SFP. Moreover, we present a domain-independent technique to compile a planning

problem with extended goals into a classical planning problem.

As a proof of concept, the techniques have been implemented in a prototype con-

figuration tool called Nuri, which has been used to configure typical use-cases in cloud

environment. The experiment results demonstrate that the Nuri is capable of planning

and deploying the configurations in a reasonable time, with guaranteed constraints on

the system throughout reconfiguration process.

iii

Acknowledgements

The greatest thanks go to Mr. Paul Anderson, Dr. Michael Rovatsos and Dr. Ger-

hard Wickler who accepted me as a student, and then supervised me during my study.

They gave many useful advices and other supports that helped me during difficult times

in Edinburgh. Their openness and friendliness made our discussions to be very pro-

ductive.

This thesis will not exist without encouragement from my beloved wife, Vicky

Vilsy, to apply the scholarship. She also has been very patience and supportive during

my study. I am also very grateful to my parents in Jakarta, Indonesia, who supported

me in many things.

Many thanks to Lawrence Wilcock, Eric Deliot, Julio Guijarro and other researchers

from Hewlett-Packard Laboratory, who have spent their times discussing various things

about my research, gave me useful advices, and also made my internship in Bristol

very pleasant. Special thanks to Patrick Goldsack who has taught me many things

about SmartFrog.

I am also in debt to Dr. James Cheney who has given me useful advices about

Denotational Semantics, and provided some extra fundings for my study. I would also

thank to Andrew Farrell who has taught me about Behavioural Signatures model and

other things during early days of my study. Thanks to John Hewson who has been

given valuable feedbacks. And thanks to Prof. Heru Suhartanto and Dr. M. Rahmat

Widyanto from the Universitas Indonesia, who have given me recommendation letters

for my application.

My study at the University of Edinburgh was fully funded by a grant from HP Labs

Innovation Research Program award.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Herry)

v

Table of Contents

List of Figures xi

List of Tables xix

1 Introduction 3
1.1 Contributions . 7

1.2 Thesis Structure . 9

1.3 Related Publications . 10

2 Background 13
2.1 System Configuration . 13

2.1.1 Approaches . 15

2.1.2 Configuration Language . 18

2.1.3 Specification Deployment 20

2.1.4 Monitoring . 22

2.1.5 Practical Configuration Tools 23

2.2 Automated Planning . 31

2.2.1 STRIPS Representation of Classical Planning 34

2.2.2 Planning Domain Definition Language 35

2.2.3 Finite Domain Representation of Classical Planning 36

2.2.4 Heuristic Search . 37

2.3 Syntax and Semantics . 41

2.3.1 Syntax . 41

2.3.2 Semantics . 41

2.3.3 Denotational Semantics . 42

2.3.4 Semantic Algebra . 42

2.3.5 Valuation Functions . 43

2.4 Summary . 44

vii

3 Modelling Configuration Changes 45

3.1 SmartFrog by Example . 46

3.2 Formal Semantic of SmartFrog Language 49

3.2.1 Abtract Syntax . 50

3.2.2 Semantic Algebras . 52

3.2.3 Valuation Functions . 60

3.2.4 Correctness . 63

3.2.5 Discussion . 65

3.2.6 SF for Planning . 68

3.3 SFP by Example . 69

3.4 Formal Semantic of SFP Language 73

3.4.1 Core Abstract Syntax . 73

3.4.2 Type System . 75

3.4.3 Core Valuation Functions . 79

3.4.4 Global Constraint . 81

3.4.5 Action . 86

3.4.6 Discussion . 87

3.5 Summary . 89

4 Planning Configuration Changes 91

4.1 Planning with Extended Goal . 92

4.1.1 First-Order Formula . 93

4.1.2 Uncompilability Constraint 97

4.1.3 Partial-Order Plan . 98

4.1.4 State Trajectory Constraint of PDDL3 100

4.2 Configuration Task as Classical Planning Problem 105

4.2.1 Normalisation . 105

4.2.2 Translation . 107

4.2.3 Planning . 109

4.2.4 Post-processing . 110

4.2.5 Example . 111

4.2.6 Loose Specification . 117

4.3 Summary . 118

viii

5 Deploying Configuration Changes 119

5.1 Orchestration . 120

5.2 Choreography . 123

5.2.1 Assumptions . 124

5.2.2 Choreographing Behavioural Signature Model 126

5.2.3 Executing Behavioural Signature Model 136

5.2.4 Correctness . 150

5.2.5 Progression Execution with Idempotent Actions 151

5.2.6 Discovery Service . 153

5.2.7 Extending the Model . 154

5.3 Summary . 154

6 Evaluation 155

6.1 Formal Semantics of SmartFrog Language 156

6.1.1 Link Reference Resolution 156

6.1.2 Specifications in the SmartFrog Distribution Package 158

6.2 Planning with Extended Goal . 162

6.2.1 Design of Experiments . 162

6.2.2 Problem Domains . 163

6.2.3 Results and Analysis . 164

6.2.4 Discussion . 171

6.2.5 Summary . 172

6.3 Planning Configuration Changes . 173

6.3.1 Design of Experiments . 173

6.3.2 Description of the Systems 177

6.3.3 Results and Analysis . 181

6.3.4 Discussion . 204

6.3.5 Summary . 208

6.4 Planning and Deploying Configuration Changes in Practice 209

6.4.1 Nuri . 209

6.4.2 Use Case 1: Apache Hadoop 212

6.4.3 Use Case 2: HP IDOLoop 216

6.4.4 Use Case 3: Configuration Relocation on the BonFIRE Infras-

tructure . 219

6.4.5 Discussion . 226

ix

6.4.6 Summary . 227

7 Conclusion 229
7.1 Hypotheses and Contributions Revisited 230

7.2 Future Works . 231

A SmartFrog Language 235
A.1 Concrete Syntax . 235

A.2 Proofs . 235

B SFP Language 239
B.1 Concrete Syntax . 239

C Examples of System Configuration Task in SFP and PDDL 241
C.1 System-A . 241

C.1.1 Cloud Deployment Scenario 241

C.1.2 Cloud Burst Scenario . 244

C.2 System-B . 249

C.2.1 Cloud Deployment Scenario 249

C.2.2 Cloud Burst Scenario . 252

C.3 System-C . 258

C.3.1 Cloud Deployment Scenario 258

C.3.2 Cloud Burst Scenario . 262

Bibliography 271

x

List of Figures

1.1 A conceptual architecture of configuration tools that make use of au-

tomated planner. 4

1.2 A choreography architecture of Nuri system configuration tool (BSig

model = Behavioural Signature model). 8

1.3 The structure of chapters and sections and their relations (arrows). . . 9

2.1 A comparison summary of approaches to the system configuration

problems. Abbreviations: DSL = Domain Specific Language; CDL =

CDDLM Definition Language; DDL = Domain Definition Language;

PDDL = Planning Domain Definition Language; SPPL = Stream Pro-

cessing Planning Language; YAML = Yet Another Markup Language;

JSON = JavaScript Object Notations. (∗) The ordering constraints be-

tween resource components within a single machine, but not across

different machines, can be defined using Puppet relationship. (∗∗)

The ordering constraints can be defined as the Behavioural Signature

model. (∗∗∗) The ordering constraints between lifecycles of CDDLM

components can be defined using CDL control-flow. 19

2.2 The LCFG status display of four machines. 22

2.3 An example of Behavioural Signature model for the 3-tier web appli-

cation. 25

3.1 An example system that consists of two web servers and two clients. . 47

3.2 The compiler output of SF specification in listing 3.1 in YAML. . . . 49

3.3 The process for developing the formal semantics of SmartFrog language. 49

3.4 An example specification with implicit cyclic link reference. 59

3.5 Examples of forward references. 66

3.6 Ambiguous forward placement. 67

3.7 Examples of standard and forward prototypes. 68

xi

3.8 The new desired state of the example system in figure 3.1. The new

values are using bold fonts. 70

3.9 SFP specification of the resource model of the system depicted in fig-

ure 3.1. It is kept in file model.sfp. 71

3.10 SFP specification of the current state of the system depicted in figure 3.1. 72

3.11 SFP specification of the desired state of the system depicted figure 3.8. 72

4.1 The solution plan before (top) and after (bottom) postprocessing. . . . 93

4.2 Truth table of an implication. 95

4.3 Overview of the steps for solving SFP Task 105

5.1 The orchestration architecture. 120

5.2 The architecture of an agent where the deployment part of the resource

component is implemented in Ruby. 122

5.3 Overview of choreographing steps for constructing the Behavioural

Signature model based on given SFP configuration task. 126

5.4 The global plan for choreographing the BSig models for the multi-

services system (see figure 3.1), where the current and the desired state

are given in listing 3.10 and 3.10 respectively. Arrows are the ordering

constraints. The precondition providers and the local goals are gener-

ated based on the causal-links (dash-arrows). Every goal is assigned to

the right side agent. 132

5.5 The global plan for choreographing the BSig models of simple cloud

system. The precondition providers and the local goals are generated

based on the causal-links (dash-arrows). Every goal is assigned to the

right side agent. 135

5.6 These are the other four possible states, besides the initial state, when

executing the plan in figure 5.4 with regression. 137

5.7 The LCC interaction model of BSig execution for single agent system. 139

5.8 The sequence diagram of single agent BSig execution for the simple

cloud system. Gi and Flawi are the goal and flaws that should be

achieved and repaired by the agent. Acti is the action that will be

executed, and Prei is the precondition of Acti that should be satisfied

before execution. 141

xii

5.9 The local IM that finds and executes the necessary actions that can re-

pair the flaws of given goal. It calls itself recursively to achieve the

local precondition, and starts remote IM to send the remote precondi-

tions to other agents concurrently. 143

5.10 Multi is the main interaction model, satisfier is the interaction model

for receiving and achieving any goal request from other agent, and

healer is the interaction model for achieving the local goal (self-healing).145

5.11 The agent transitions between interaction model multi, healer, satis-

fier, local, and remote when it executes the multi-agents regression

algorithm. 146

5.12 Example: multi-services system – the interaction diagram of agents

when executing the BSig models based on the plan depicted in figure

5.4. 147

5.13 Example: simple cloud system – the interaction diagram of agents

when executing the BSig models based on the plan depicted in figure

5.5. 149

6.1 Two equivalent specifications with different orders of statements. . . . 157

6.2 The outputs of the first specification (figure 6.1a) using (a) the produc-

tion compiler and (b) our compiler. 157

6.3 The outputs of the second specification (figure 6.1b) using (a) the pro-

duction compiler and (b) our compiler. 157

6.4 List of specification files from the SmartFrog distribution package which

are used in the experiments. 159

6.5 List of included specification files from the SmartFrog distributed pack-

age. 159

6.6 The accumulated number of solved problems for Openstacks domain

based on planning time FDT (dark-grey) and MIPS-XXL (light-grey).

The total number of problems is 2000 (20 datasets, each of which has

100 problems). A higher line means that the planner can solve more

problems in shorter time than another. 165

xiii

6.7 The number of solved problem per dataset for Openstacks domain

using FDT (dark-grey) and MIPS-XXL (light-grey). There are 20

datasets i.e. p01-p20, each of which has 100 problems. Each dataset

differs from the others on the number of products/orders that should be

delivered and the number of stacks that can be used during production. 165

6.8 The minimum, average and maximum planning time for Openstacks

problems which are solved by both FDT and MIPS-XXL. Note that

the problems which were not solved by both planners are excluded.

Each dataset differs from the others on the number of products/orders

that should be delivered and the number of stacks that can be used

during production. 166

6.9 The accumulated number of solved problem for Rovers domain based

on planning time FDT (dark-grey) and MIPS-XXL (light-grey). The

total number of problems is 2000 (20 datasets, each of which has 100

problems). A higher line means that the planner can solve more prob-

lems in shorter time than another. 167

6.10 The number of solved problem per dataset for Rovers domain using

FDT (dark-grey) and MIPS-XXL (light-grey). There are 20 datasets

i.e. p01-p20, each of which has 100 problems. Each dataset differs

from others on the numbers of rovers, objects, and waypoints. 167

6.11 The average planning time for Rovers problems which are solved by

both FDT and MIPS-XXL. Note that the problems which were not

solved by both planners are excluded. Each dataset differs from others

on the numbers of rovers, objects, and waypoints. 168

6.12 The number of solved problem for Storage domain based on planning

time FDT (dark-grey) and MIPS-XXL (light-grey). The total number

of problems is 2000 (20 datasets, each of which has 100 problems). A

higher line means that the planner can solve more problems in shorter

time than another. 169

6.13 The number of solved problems per dataset for Storage domain using

FDT (dark-grey) and MIPS-XXL (light-grey). There are 20 datasets

i.e. p01-p20, each of which has 100 problems. Each dataset differs

from the others on the number of crates, hoists, and storages. 169

xiv

6.14 The average planning time for Storage problems which are solved by

both FDT and MIPS-XXL. Note that the problems which were not

solved by both planners are excluded. Each dataset differs from the

others on the number of crates, hoists, and storages. 170

6.15 The summary of the average planning time and the number of solved

problems by FDT and MIPS-XXL for all domains. 171

6.16 The cloud deployment scenario where the left and the right are the

current and the desired configuration state of the system respectively.

The arrows are representing the dependencies between services. s0→
s1 means that s0 depends on s1. Thus, s1 must be started before s0,

and s1 must be stopped after s0. 173

6.17 The cloud burst scenario where the left and the right are the current and

the desired configuration state of the system respectively. The arrows

are representing the dependencies between services (s00→ s01 means

that s00 depends on s01, thus, s01 must be started before s00, or s01

must be stopped after s00), or between the client and the service (the

client must always refer to a running service). 174

6.18 System-A: a cloud-based system where there are m subsystems, each

of which has n application layers. All subsystems are connected to a

load balancer (LB) as the service interface to the user. 178

6.19 System-B: a cloud-based system where there are n layers of subsys-

tem, each of which consists of one load balancer (LB) and m applica-

tion services. 179

6.20 System-C: a cloud-based system where there are n application services

where the dependencies between the services are acyclic and generated

randomly. This figure shows an example system with 10 application

services, whose dependencies were generated randomly, and 1 front-

end application service. The boxes are the services which are running

on VMs, and the arrows are the dependencies between the services. . 180

6.21 The tables show the planning time for system-A in the cloud deploy-

ment scenario. From top to bottom are the planning times of MIPS-

XXL, NuriFF and NuriLM. Note that “to” equals to timeout – the

planner cannot find the solution within the deadline. 182

xv

6.22 The planning time (y-axis) for system-A in the cloud deployment sce-

nario where m is fixed at 10 and n (x-axis) is ranging from 1 to 50.

Note that the number of services is (n×m)+1. From 50 tasks, NuriFF

and NuriLM solved all tasks, while MIPS-XXL only solved 7 tasks. . . 183

6.23 The planning time (y-axis) for system-A in the cloud deployment sce-

nario where m (x-axis) is ranging from 1 to 50 and n is fixed at 10.

Note that the number of services is (n×m)+1. From 50 tasks, NuriFF

and NuriLM solved all tasks, while MIPS-XXL only solved 7 tasks. . . 184

6.24 The tables show the planning time for system-A in the cloud burst

scenario. From top to bottom are the planning times of MIPS-XXL,

NuriFF and NuriLM. Note that “to” means timeout, and “mem” means

out of memory . 186

6.25 The planning time (y-axis) for system-A in the cloud burst scenario

where m is fixed at 10 and n (x-axis) is ranging from 1 to 50. Note that

the number of services is (n×m)+ 1. From 50 tasks, NuriLM solved

17 tasks, NuriFF solved 2 tasks, and MIPS-XXL solved 1 task. 187

6.26 The planning time (y-axis) for system-A in the cloud burst scenario

where m (x-axis) is ranging from 1 to 50 and n is fixed at 10. Note that

the number of services is (n×m)+ 1. From 50 tasks, NuriLM solved

18 tasks, NuriFF solved 1 task, and MIPS-XXL solved none. 188

6.27 The tables show the planning time for system-B in the cloud deploy-

ment scenario. From top to bottom are the planning times of MIPS-

XXL, NuriFF and NuriLM (“to” equals to timeout). 191

6.28 The planning time (y-axis) for system-B in the cloud deployment sce-

nario where m is fixed at 10 and n (x-axis) is ranging from 1 to 50. Note

that the number of services is (n×m)+n. From 50 tasks, NuriLM and

NuriFF solved all tasks, while MIPS-XXL only solved 6 task. 192

6.29 The planning time (y-axis) for system-B in the cloud deployment sce-

nario where m (x-axis) is ranging from 1 to 50 and n is fixed at 10. Note

that the number of services is (n×m)+n. From 50 tasks, NuriLM and

NuriFF solved all tasks, while MIPS-XXL solved 5 task. 193

6.30 The tables show the planning time for system-B in the cloud burst

scenario. From top to bottom are the planning times of MIPS-XXL,

NuriFF and NuriLM . Note that “to” means timeout, and “mem” means

out of memory. 194

xvi

6.31 The planning time (y-axis) for system-B in the cloud burst scenario

where m is fixed at 10 and n (x-axis) is ranging from 1 to 50. Note that

the number of services is (n×m)+ n. From 50 tasks, NuriLM solved

14 tasks, while NuriFF and MIPS-XXL only solved 1 task. 195

6.32 The planning time (y-axis) for system-B in the cloud burst scenario

where m (x-axis) is ranging from 1 to 50 and n is fixed at 10. Note that

the number of services is (n×m)+ n. From 50 tasks, NuriLM solved

13 tasks, NuriFF solved 1 task, and MIPS-XXL solved none. 196

6.33 A typical Hadoop Cluster with 1 Hadoop master and N slaves. 211

6.34 Planning: time of Nuri for generating a partial-order plan in orchestra-

tion mode. Choreography: time of Nuri for generating BSig models in

choreography mode. 214

6.35 Execution time of Nuri for deploying Apache Hadoop system from

scratch on HP Cells. 214

6.36 The architecture of the HP IDOLoop system, where the arrows show

the dependencies between the services. 216

6.37 The Nuri planning time for deploying HP IDOLoop system from scratch

on the HP Cells. 217

6.38 The Nuri execution time for deploying HP IDOLoop system from scratch

on the HP Cells. 218

6.39 The current state (left), and the desired state (right) of the 3-tier system. 220

6.40 Nuri on BonFIRE infrastructure. 222

6.41 The generated workflow for the system with one application service. . 224

6.42 The planning (a) and the execution (b) times with various number of

application services (per system). 224

xvii

List of Tables

6.1 The total solved tasks and the average planning time for generating

the workflows for deploying system-C from scratch using MIPS-XXL,

NuriFF , and NuriLM . Note that “to” equals to timeout. 198

6.2 The total solved tasks and the average planning time for generating the

workflows for system-C in the cloud burst scenario using MIPS-XXL,

NuriFF , and NuriLM . Note that “to” equals to timeout, and “mem”

equals to out of memory. 201

xix

LIST OF TABLES 1

Behavioural Signature

Chapter 1

Introduction

Cloud computing is now an accepted option for deploying services – services can be

easily created, deleted and relocated to cater for changes in requirements, demands and

economics. These capabilities are supported by large scale computing infrastructures

whose size and complexity are growing inevitably. On the other side, configuring and

managing cloud services are not easy tasks; the cloud environment is highly distributed

and federated with unpredictable loading; and there is a wide variety of configuration

aspects such as network, application service, and security, each of which may have

dependencies on others. These increase awareness of the need for good system config-

uration tools in order to fully exploit the potential of the cloud, and most sites now use

some form of tool to manage their configurations.

From various approaches, declarative specifications are now widely accepted as

the most appropriate one – the configuration specification describes the “desired” state

of the system, and the tool computes and executes the necessary actions to bring the

system from its current state into this desired state. This has an advantage that the final

state of the system is explicitly specified. Thus, we can have a confidence that the state

of the system matches with our requirements. Other approaches are more error-prone

because they involved specifying the actions (for example, imperative scripts), where

the final outcome would not always be obvious. With varying degrees of strictness,

most of the current popular tools take a broadly declarative approach, for example

Puppet [Puppet Labs, 2014], LCFG [Anderson and Scobie, 2002], and BCFG [Desai

et al., 2003].

However, none of the above tools make any guarantees about the order of the

changes across the system involved in implementing a configuration change. This

is not normally an issue when deploying a new service – we define the specification

3

4 Chapter 1. Introduction

and the tool implements the necessary changes in some “random” order. When it has

finished, we have a running system matching to our specification. But, if we are mak-

ing a configuration change (reconfiguration) to an existing system, we may well care

about the intermediate states of the configuration during the transition. For example, if

we want to transition from using one to another server, then we probably want to start

the new server first, and transfer the clients before shutting down the old one.

One approach to the above problem has been the use of provisioning tools – we de-

fine and store static workflows so they can be invoked and scheduled automatically by

a central controller to satisfy the ordering constraints. IBM Tivoli [IBM Corp., 2014],

Microsoft System Center [Microsoft Corp., 2014], Ansible [Ansible Inc., 2014], and

Chef [Opscode Inc., 2014] are the example tools which provide this kind of capability.

However, this still requires the workflows to be computed manually. Even in a small

system, a very large number of workflows would be required to cater for every eventu-

ality. In addition, choosing an appropriate workflow to suit to a particular desired state

is not always obvious – this is conceptually similar to the imperative scripts which are

no longer popular because of their unreliability.

An alternative approach is to make use of automated planning techniques which

generate workflows “on the fly”. This allows us to define a specification that consists

System Descriptions

Observations

State

Actions

Plans

Goals

Sensor Controller

System

Planner

Events

Figure 1.1: A conceptual architecture of configuration tools that make use of automated

planner.

5

of the current state1 as well as the desired state, together with a set of constraints

defined in actions. Based on this specification, the planner automatically generates the

workflow which is then executed to implement the transition of the system between

two arbitrary states without violating the specified constraints. This has an advantage

that the tool can be used either for deploying a new system from scratch or for making

a configuration change. Figure 1.12 illustrates a common conceptual architecture of

system configuration tools which make use of automated planner. [Keller et al., 2004,

El Maghraoui et al., 2006, Levanti and Ranganathan, 2009, Hagen and Kemper, 2010]

are some previous works which are using this kind of approach.

However, none of these works allow us to define the global constraints – a set

of invariant constraints that must be satisfied at the intermediate and final states, as

the goals3 of the system. All constraints must be defined explicitly as preconditions

associated with some actions. A change to a global constraint forces us to modify the

actions.

Clearly, we could modify the action in order to satisfy the global constraints. But,

in real situations this is impractical; the specification is commonly written by software

engineers or experts who have a deep knowledge of the software which the system

administrator usually does not have. Determining whether an action must be modified

or not may be as hard as the planning itself, since the constraints for execution could

require arbitrary states to be achieved by previous actions. In addition, a modification

may not be allowed due to a lack of permission or a license violation, for example.

On the other hand, current declarative configuration languages do not have the no-

tions of actions and global constraints. Planning Domain Definition Language (PDDL)

[McDermott et al., 1998], as de facto language of the automated planning community,

cannot be used because it lacks of desired features which are available in the practical

configuration languages such as object-oriented modelling, inheritance, composition,

and file inclusion. A mixed representation is not a good solution either because the

system administrator must learn two languages at the same time, where both have dif-

1This could be automatically generated by the tool.
2The architecture has: a planner that use goals (from users) and system descriptions (objects and

actions descriptions) as well as the current state of the system (from sensor) to automatically generate
a plan to achieve the goals; a controller that deploys configuration changes by executing actions within
particular ordering constraints as defined in the plan, it also observes the state (from sensor) of the
system as plan being executed in order to monitor particular uncertainty of the system. Note that some
events may change the state of the system. Thus, it is necessary for the configuration to perform a
continuous deployment to correct any drift from the goals.

3In the previous works, we can only define the constraints that must be satisfied at the final state as
the goals.

6 Chapter 1. Introduction

ferent semantics. This is clearly error-prone.

These issues lead us to the first and second hypotheses of this thesis:

Hypothesis 1: “It is possible to extend the existing practical configuration
language which could be used to define a configuration specification which
consists of the desired state, the actions, and the global constraints.”

Hypothesis 2: “It is possible to automatically generate a workflow which
can bring the system from the current to the desired state, but also preserve
global constraints during configuration changes.”

On the other side, most practical configuration tools are highly centralised – a cen-

tral controller gathers information about the state of the system and orchestrates the

workflow by communicating directly with the systems involved at each step. Although

this is simple and easy to implement, this creates a potential bottleneck in large sys-

tems, and can also be unreliable if the communication with the controller is disrupted,

which is particularly relevant since reconfiguration frequently occurs as an autonomic

response to system failures.

Fully distributed planning4, on the other hand, is not a good solution to this problem

either – avoiding deadlock/livelock may require agents to have considerable global

knowledge and achieving such knowledge is likely to result in even more costly inter-

agent communication. Predicting the behaviour of such systems is also more difficult,

and hence they are less acceptable to system administrators in real situations.

SmartFrog [Goldsack et al., 2009] is a declarative configuration tool that has an

interesting exception in addressing this issue. Its resource components which man-

age the various aspects of the system can be augmented with Behavioural Signatures

[Farrell et al., 2010]. These allow the system administrator to specify a set of models

which defines state-dependencies between components so that a change of state in one

component may depend on changes of state in other components. This could produce

a cascade of distributed state changes with particular ordering constraints. Unfortu-

nately, the dependencies must be computed manually which is error-prone and time

consuming. The models must also be validated for livelock and deadlock conditions

before they can be deployed. And if such condition is found, then they must be cor-

rected manually, which makes it impractical.

These motivate our third hypothesis:

4The system is managed by a set of agents, each of which can automatically generate and execute
arbitrary workflow.

1.1. Contributions 7

Hypothesis 3: “It is possible to automatically construct a set of reactive
agents augmented with Behavioural Signatures, that choreograph config-
uration changes without any central controller.”

The above hypotheses are related with a conceptual architecture presented in figure

1.1. They concern on different elements of the architecture. Hypothesis 1 concerns on

increasing the expressiveness of the configuration language which is used to specify

the goals and the descriptions of the system. Hypothesis 2 focus on the capability of

the planner for solving a configuration task with global constraints. And hypothesis 3

provides an alternative approach of the controller for deploying configuration changes.

1.1 Contributions

Based on the hypotheses, the contributions of this thesis can be divided into three

parts: modelling, planning and deployment. The first part is for supporting the first

hypothesis by extending an existing configuration language to add the notion of global

constraints. Although this may look simple, but this is a non-trivial problem since most

popular configuration languages are extremely informal where the behaviour is defined

implicitly by a single implementation. If we are not carefully adding a new feature to

the language, then it could break the existing semantics or introduce ambiguities. Thus,

the first part of our contributions are:

• Formally define the semantics of the core subset of SmartFrog [Goldsack et al.,

2009] language.

• Extending the semantics of the core subset of SmartFrog by adding new nota-

tions for the action description and the global constraints.

The second part is related to the second hypothesis which is automatically gener-

ating a workflow that can achieve the desired state and preserve the global constraints.

However, although this thesis is mainly motivated by problems of system configuration

domain, but one of our contributions can be applied to any domain. These contribu-

tions are:

• A domain independent technique to compile a planning problem with extended

goal into a classical planning problem.

• A technique to solve a configuration task by translating the task into a classical

planning problem.

8 Chapter 1. Introduction

The last part of the contributions is related to the third hypothesis which is a mixed

approach between the centralised planning and the distributed execution for deploying

configuration changes. The contributions are:

• A choreographing technique that automatically constructs a set of reactive agents

augmented with Behavioural Signatures.

• A multiagent regression algorithm that executes a plan distributively, generalises

the plan to reduce the requirements of replanning, and enables the self-healing

capability.

Another contribution is a prototype system configuration tool, called Nuri, that

implements the techniques described in this thesis. It is released as an open source

software which can be accessed at:

http://homepages.inf.ed.ac.uk/s0978621/nuri

Nuri implements a conceptual architecture as illustrated in figure 1.2. The main

difference of this architecture comparing to a centralised one (e.g. figure 1.1) is that it

assumes the system consisting of subsystems, each of which is managed by an agent

ActionsObservations

State0

ActionsObservations

BSig Model0 BSig Modeln

Remote Preconditions

Plans

Goals

Subsystem0

Sensor0 Controller0

Subsystemn

Sensorn Controllern
Staten….

….

Monitor Choreographer

Planner

State

Master Agent

AgentnAgent0

System

System
Descriptions

Events Events

Figure 1.2: A choreography architecture of Nuri system configuration tool (BSig model

= Behavioural Signature model).

1.2. Thesis Structure 9

which has a sensor and a controller. There is a master-agent that has: a monitor that

aggregates the states of subsystems from all sensors; a planner that uses the state (from

monitor), goals (from users), and system descriptions to automatically generate a plan

that can achieve the goals; a choreographer that automatically translates the plan into a

set of Behavioural Signature (BSig) models, each of which is sent to a particular agent.

Each agent’s controller continuously observes the state of the system (from sensor) in

order to select and execute appropriate actions in order to achieve the subsystem’s goal

as defined in the BSig model as well as anticipate any uncertainty on the subsystem.

1.2 Thesis Structure

The structure of this thesis is illustrated in figure 1.3. It consists of seven chapters

whose relations are shown by arrows. The first chapter presents the motivations, the

hypotheses and the contributions of this thesis. It is then followed by a chapter that

summaries the background and the related work on the system configuration and the

automated planning.

4. Planning Configuration Changes

2.1. System
Configuration

2.2. Automated
Planning

2. Background

4.1. Planning with
Extended Goal

3. Modelling Configuration Changes

3.1. Formal
Semantics

of SmartFrog
Language

4.2. Configuration
Task as Planning

Problem

3.2. Formal
Semantics

of SFP
Language

1. Introduction

6. Evaluations

6.2. Planning with
Extended Goal

6.1. Formal Semantics of
SmartFrog Language

6.4. Planning and Deploying
Configuration

Changes in Practice

6.3. Planning
Configuration

Changes

5. Deploying Configuration Changes

7. Conclusions

Figure 1.3: The structure of chapters and sections and their relations (arrows).

10 Chapter 1. Introduction

Contributions on modelling configuration changes are presented in chapter three. It

describes the formal semantics of the core of SmartFrog (SF) language. It then presents

the semantics of SFP language that extends this SF core. This extension will be used

in other chapters.

Chapter four presents the second part of contributions on planning. The first sec-

tion describes a domain-independent technique to compile a planning problem with

extended goal into a classical planning problem. The second section presents a tech-

nique to translate a configuration task into a classical planning problem whose solution

(plan) will be executed for implementing the configuration changes.

In chapter five, a novel technique for deploying configuration changes is presented.

First, it describes how to construct a set of reactive agents that choreograph the plan

execution without any central controller. Second, it presents a multi-agent execution

algorithm for executing the plan with regression that enables the self-healing capabil-

ity.

To validate the contributions, the evaluation results are described in chapter six.

Finally, we present the conclusion and the future works of this thesis.

1.3 Related Publications

Some contents of this thesis have been published on the following papers:

• H. Herry and P. Anderson, Planning Configuration Relocation on the BonFIRE

Infrastructure, In Proceedings of CloudCom 2013 Workshop on Using and Build-

ing Cloud Testbeds (UNICO’13), 2013.

• H. Herry, P. Anderson, and M. Rovatsos, Choreographing Configuration Changes,

In Proceedings of 9th International Conference on Network and Service Man-

agement (CNSM’13), 2013.

• P. Anderson, S. Bijani, and H. Herry, Multi-agent Virtual Machine Manage-

ment Using the Lightweight Coordination Calculus, In Transactions on Com-

putational Collective Intelligence XII, pages 123-142, 2013.

• H. Herry and P. Anderson, Planning with Global Constraints for Computing In-

frastructure Reconfiguration, In Proceedings of the AAAI-12 Workshop on Prob-

lem Solving using Classical Planners (CP4PS’12), 2012.

1.3. Related Publications 11

• H. Herry, P. Anderson, and G. Wickler, Automated Planning for Configuration

Changes, In Proceedings of 25th Large Installation System Administration Con-

ference (LISA’11), 2011.

Chapter 2

Background

This chapter presents the related backgrounds and the literature survey of two research

fields which are System Configuration and Automated Planning, as this thesis is on the

junction between them.

2.1 System Configuration

System configuration deals with a problem to transform a set of computing resources

into a functioning system according to particular requirements. Basically, the problem

starts with a set of bare metal machines, a repository of the necessary software pack-

ages and data files, and a specification of the functions that the entire system should

perform based on the requirements. Then, we must load the software and configure

the machines in order to enable the required functionality. Whenever the specifica-

tion or the environment1 changes, then we must reconfigure the machines to maintain

conformance with the specification [Anderson, 2006].

Although the above basic problem is straightforward, but in practice, there are

several factors that complicate the problem and make it very difficult to be solved.

One of the factors is managing the relationships. In system configuration, we are

mainly concerned about the functionality of the whole system which involves complex

relationships between configurable components, where the configuration of a particu-

lar component can depend on the configuration of another component. For example,

to have a working web application, we must not only configure a web server, but also

a database server, the firewall settings, etc; the web server itself must know the port

number that the database server will listen to. Some relationships exist between com-

1For example, some application services are broken.

13

14 Chapter 2. Background

ponents on the same machine, while the others exist between components on different

machines. The latter is the most difficult situation because managing relationships in a

distributed system is very complex.

Another complicating factor is managing changes. Change management is required

because both the configuration specification and the system itself are in a constant state

of change. The rate of change can vary between different systems. The changes can

be caused by many reasons, for examples: the software packages must be updated

to fix some security vulnerabilities; new machines must be configured to replace the

broken ones; a new instance of web service must be added to the cluster to address the

increasing demands. The relationships between components increase the complexity

of change management since any change on a particular component can affect the

others – we may not want to stop a server until all clients have redirected to using

another one, for example. Thus, it is a good practice to carefully plan and verify every

configuration change before deployment to avoid any unexpected outcome.

Uncertainty is also a factor that complicates the system configuration problem. It is

natural that there is no certainty in the system’s environment e.g. every machine can be

broken at any time. On the other hand, there is no guarantee that every configuration

change will be successful because the configuration process can fail at any step. Thus, a

good configuration tool should be able to reason about this uncertainty to have a sound

reconfiguration of the system. It also must be sufficiently robust to any configuration

failure.

[Kephart and Chess, 2003] see the problem as a grand-challenge, and introduced

an idea of Autonomic Computing which can be summarised as follows:

“Like their biological namesakes, autonomic systems will maintain and
adjust their operation in the face of changing components, workloads, de-
mands, and external conditions and in the face of hardware or software
failures, both innocent and malicious.”

The essence of autonomic computing system is self-management with the intention to

free the administrator from the details of operating and maintenance processes. Any

computing system should be able to manage itself given high-level objectives from

administrators. There are four aspects of self-management that should be provided by

the system:

• self-configuration – the system automatically and seamlessly adjusts itself to

maintain conformance to the high-level policies;

2.1. System Configuration 15

• self-optimisation – the system continually searches opportunities to improve its

performance and efficiency;

• self-healing – the system automatically detects, diagnoses and repairs any soft-

ware and hardware problem;

• self-protection – the system automatically defends against malicious attacks or

cascading failures.

Supporting the autonomic system introduces new complications, in particular on

how to specify the desired configuration. If the specification has too many low-level

details, then there is not enough room for the configuration tool to find an alternative

solution. For example, we might specify:

• Server A and B run an identical web service;

• Machine X uses a web service of server A;

• Machine Y uses a web service of server B.

However, whenever server A fails, then machine X will fail as well because there is no

alternative web service in our specification. We may use the following event-condition-

action (ECA) rules to define procedures for failure recovery:

• If server A fails, then set machine X to use a web service of server B;

• If server B fails, then set machine Y to use a web service of server A.

Unfortunately, this is not a good solution because there is no explicit desired specifi-

cation because the rules will dynamically change the specification. A better solution is

to define the specification as a logical formula:

• Server A and B run an identical web service;

• Machine X uses a web service of server A or B;

• Machine Y uses a web service of server A or B.

Based on the above specification, the tool can automatically compute the configu-

ration details as well as the required steps that make true the desired configuration.

2.1.1 Approaches

The approaches to address the system configuration problem have evolved from man-

ual to more automated approaches. The following paragraphs briefly highlights this

evolution [Herry et al., 2011].

16 Chapter 2. Background

Manual configuration – the administrator manually computes the necessary actions

to change from one to another configuration, and then manually executes the com-

mands to implement this. Clearly, this is error-prone and time-consuming. It is diffi-

cult to prove reliably that this manually chosen sequence of changes will match with

the configuration requirements under all circumstances.

Imperative scripts – this is similar to the previous approach, except that the se-

quence of changes is captured in an imperative script. This is allowing it to be ex-

ecuted multiple times and on different systems, or to be shared between the system

administrators to be reused or modified for particular systems. This clearly makes it

easier to deal with large numbers of systems, and until recently, this was probably the

most common approach to configuration for many people. However, this approach

still suffers most of the problems faced by the manual approach. In particular, it is not

always obvious that the selected script could meet the necessary preconditions. Thus,

the system administrator has a tendency to apply the script blindly resulting in very

unpredictable outcomes.

Fixed workflow orchestration – in the case where the sequence of configuration

changes really matter, some tools are able to perform sequences of configuration changes

automatically and/or unattended. A system administrator can create or choose a work-

flow2 from the workflows repository which is suitable with the current and the desired

state of the system. Then, the execution of the workflow will be orchestrated by a

central controller by invoking the actions remotely using particular protocol such as

secure remote shell. This helps the administrator to easily configure the machines in

various locations. This is also suitable for a typical organisation that has centralised

management. However, this approach still requires the administrator to compute the

workflows manually, where a very large number of workflows will be required to cater

for every eventuality, even for a small system. In addition, this is conceptually sim-

ilar to the imperative scripts where choosing an appropriate workflow is not always

obvious. Ansible [Ansible Inc., 2014], IBM Tivoli [IBM Corp., 2014], and Microsoft

System Center [Microsoft Corp., 2014] are the examples of configuration tools that

implement this approach.

2We might have to set some necessary parameters as well.

2.1. System Configuration 17

Declarative specification – some popular configuration tools , such as Puppet [Pup-

pet Labs, 2014], SmartFrog [Goldsack et al., 2009], CDDLM [Loughran and Toft,

2008], and LCFG [Anderson and Scobie, 2002], are using a kind of declarative ap-

proach which allows us to explicitly specify the desired state. This specification is

then used by the tool to compute and implement the necessary changes. The tool

guarantees that the final state would match the required specification, regardless of the

current state of the system. The changes are implemented distributively by a set of

agents, each of which is controlling a particular machine. However, these tools do

not maintain the sequence of configuration changes between different machines – the

changes are essentially implemented in indeterminate order. To perform such a se-

quence, the administrator must manually present the intermediate and the final states

step-by-step to the configuration tool. This is clearly impractical and cannot be used

in unattended situation.

Dynamic workflow orchestration – some previous works [El Maghraoui et al., 2006,

Levanti and Ranganathan, 2009, Hagen et al., 2009, Hagen and Kemper, 2010, Di Cosmo

et al., 2012, Lascu, 2014] have used automated planning technology to bridge the gap

between a declarative specification and the fixed workflow orchestration. This ap-

proach allows us to model the desired configuration state of the system as well as the

operational capabilities (actions) of the resource components. Then, the model is given

to the planner which will automatically generate the workflow, eliminating the need of

an administrator to compute it manually. A central controller will orchestrate the work-

flow by scheduling what action should be executed when. However, none of the state

of the art techniques allows us to define the global constraints – the constraints that

should be satisfied in the intermediate and the final states. In addition, the centralised

deployment architecture suffers several issues such as bottleneck and single point of

failure.

Event-driven workflow – some practical configuration tools, such as Juju [Canoni-

cal Ltd., 2014], implements an event-driven workflow approach, which is based on the

reactive programming paradigm3. In this approach, every resource component has life-

cycle states. Whenever the component is making a transition between two states, it will

raise an event that will be caught by dependent components that can perform particular

actions as a reaction to the state change. This will produce a cascade of changes be-

tween the resource components. Unfortunately, the event-model must be validated for

18 Chapter 2. Background

livelock and deadlock conditions before deployment. And if such condition is found,

then it must be corrected manually which is not an easy task.

The above comparison of approaches is summarised in table 2.1.

2.1.2 Configuration Language

Regardless of the approach that we choose, the specification plays a vital role in the

system configuration because it drives the administrator and/or the tool in making the

configuration changes in order to provide the required functionality. In practice, the

specification only determines aspects that we care about, which may vary between

machines or may change over time. The specification could be simply defined in any

human language. However, if we use a configuration tool, then the requirements must

be translated into a specification in a particular configuration language supported by

the tool.

As described above, there are a broad range of approaches to the tools and their

languages. At one side, the language may be an extension of an imperative scripting

language. For example, Chef [Opscode Inc., 2014] is using a domain-specific language

based on Ruby. At the other side, it may be a custom domain-specific language which

allows a declarative specification of the desired state, such as Puppet [Puppet Labs,

2014] and SmartFrog [Goldsack et al., 2009] languages.

Imperative languages are easier to be adopted by system administrators since it is

naturally an extension of an existing manual or scripted process. They usually have

little or even no explicit specification of the desired configuration state. The adminis-

trator uses the language to manually define workflows that should be executed during

the deployment process to achieve the desired configuration. Although it is easier to

control the sequence of configuration changes, the workflows need to be tested care-

fully to make sure that they can achieve the (implicit) desired state. The workflow

execution results could be brittle if the initial state of the system is one that has not

been anticipated.

On the other hand, a custom declarative language allows us to explicitly define a

specification of the desired state which is independent of the deployment process –

for example, Puppet [Puppet Labs, 2014]. Unlike the imperative language, this makes

us easier to specify and reason about the desired configuration, although it is harder

3Reactive programming is a programming paradigm which is built on the propagation of change
where state changes are automatically propagated across the network of dependent computations by the
underlying execution model[Bainomugisha et al., 2013].

2.1.
S

ystem
C

onfiguration
19

Practical Tool / Specification Ordering Deployment

Work Paradigm Language Global Constraints Architecture Method Continuous

Constraints

Ansible Imperative YAML DSL No Manual Centralised Push Yes

IBM Tivoli Imperative WorkFlow No Manual Centralised Push Yes

Ms. System Center Imperative Runbooks No Manual Centralised Push Yes

Puppet Declarative Puppet No Manual∗ Weakly distributed Pull Yes

SmartFrog Declarative SmartFrog No Manual∗∗ Strongly distributed Push Yes

CDDLM Declarative CDL No Manual∗∗∗ Strongly distributed Push Yes

LCFG Declarative LCFG No Not available Weakly distributed Pull Yes

Juju Declarative + Event-model YAML + Shell-Script No Manual Weakly distributed Push Yes

[El Maghraoui et al., 2006] Declarative + Action-model Codasyl DDL + PDDL No Automated Centralised Push Yes

[Levanti and Ranganathan, 2009] Declarative + Action-model Tags + SPPL No Automated Centralised Push No

[Hagen and Kemper, 2010] Declarative + Action-model Groovy DSL No Automated Centralised Push No

[Di Cosmo et al., 2012] Declarative + Action-model JSON DSL No Automated Centralised Push No

[Lascu, 2014] Declarative + Action-model JSON DSL No Automated Centralised Push No

Nuri (this thesis) Declarative + Action-model SFP Yes Automated Weakly distributed Push Yes

Figure 2.1: A comparison summary of approaches to the system configuration problems. Abbreviations: DSL = Domain Specific Language;

CDL = CDDLM Definition Language; DDL = Domain Definition Language; PDDL = Planning Domain Definition Language; SPPL = Stream

Processing Planning Language; YAML = Yet Another Markup Language; JSON = JavaScript Object Notations. (∗) The ordering constraints

between resource components within a single machine, but not across different machines, can be defined using Puppet relationship. (∗∗)

The ordering constraints can be defined as the Behavioural Signature model. (∗∗∗) The ordering constraints between lifecycles of CDDLM

components can be defined using CDL control-flow.

20 Chapter 2. Background

to control the sequence of configuration changes. However, automated planning tech-

niques now can be used to generate workflows that are guaranteed to satisfy any re-

quired constraints, and achieve the desired state from any viable initial state [Herry

et al., 2011].

For pragmatic reasons, some configuration languages are closely related with the

underlying implementation and the deployment. For example, Chef [Opscode Inc.,

2014] specification, which is defined in Chef configuration language, can contain arbi-

trary Ruby code. The semantics of this kind of languages is likely to require a complete

semantics of the embedded language, and unlikely capture the higher level meaning of

the specification. For the case of Chef language, since arbitrary Ruby code can be em-

bedded to the specification, then its semantics must also include a complete semantics

of Ruby language.

The advantage of a separate language is to allow us to focus on clean statements

of the configuration requirements. It could provide specific features for effectively

supporting the tasks of system administrators such as sharing reusable configuration

elements, composing various elements of configuration from different resources, and

providing a loose4 specification [Hewson et al., 2012]. The configuration specification

can be deployed using a separate independent language which is the most appropriate

language of the tool. This clear separation should make the configuration language

to have a simpler semantics, and most importantly able to capture the essence of the

requirements. In addition, the semantics of the language can guarantee some desired

properties that are not provided by multipurpose programming language e.g. the eval-

uation of the specification is always terminated5.

2.1.3 Specification Deployment

After the requirements have been defined in the configuration specification, then a con-

figuration tool is needed to deploy the specification onto the machines. The followings

describe aspects related to the deployment process.

5In loose specification, instead of defining one specific configuration, the system administrator de-
fines constraints that should not be violated by the configuration. The tool will then automatically select
a single configuration, from a set of possible solutions, which satisfies the constraints as well as max-
imises particular objective functions.

2.1. System Configuration 21

One-time and Continuous Deployment

Some tools only have an ability to deploy the specification from scratch which is called

a one-time deployment. They cannot be used to reconfigure an existing system, in par-

ticular when the specification has changed. For example, RedHat Kickstart [RedHat

Inc., 2014] can install the operating system and the required software packages onto

target machines, but it cannot be used to add or remove the packages when the ma-

chines are running.

On the other hand, some tools, such as Puppet [Puppet Labs, 2014], have an ability

to perform a continuous deployment. These tools can deploy the specification regard-

less of the state of the system. When there is a change on the specification, the tools

will reconfigure the existing system to implement the change. When there is a change

in the system environment, the tools will correct the system to maintain conformance

with the specification (self-healing). This capability is commonly available in the state

of the art of configuration tools.

Idempotent Action

An action is called idempotent if executing it multiple times will have the same effect

as executing them once [Anderson, 2006]. Whenever the scripts contain some actions

that do have this property, then it is necessary to keep track of every change that has

been applied to the machines, which is extremely difficult.

Some configuration tools that use a more imperative approach are relying on idem-

potent actions to enable continuous deployment capability – for example, Chef [Op-

scode Inc., 2014]. The script with idempotent actions is just simply re-run again to

repair any machine whose configurations is not correct.

Deployment Architecture

[Delaet and Joosen, 2010] classified the deployment architectures into three categories.

First is a centralised architecture where a single agent is running on a central server

and it is responsible to deploy the specification onto all machines. This architecture is

simple and easy to be implemented. However, when dealing with a large scale system,

this central server quickly becomes a bottleneck. It is also less reliable because the

system could be out of control whenever there is a failure on the central server.

Other tools are using a weakly distributed architecture where every machine has

an agent that is responsible to deploy the particular specification onto the machine.

22 Chapter 2. Background

Figure 2.2: The LCFG status display of four machines.

A central server still exists, but it only has functions to compile and distribute the

specification to the agents either using a pull mechanism – the agent is responsible to

pull the specification from the server periodically, or a push mechanism – the server

periodically pushes the specification to the agents. To address the bottleneck issue, it

is possible to replicate the server and share the specification between the servers.

Some tools are implementing a strongly distributed architecture where every ma-

chine has an agent that has the same capabilities, such as compiling and deploying the

specification. Commonly, the system administrator is responsible to push the speci-

fication to the agents. The difficulty of this architecture is the coordination between

the agents during the deployment process, in particular when there are some ordering

constraints that should be maintained across different machines (agents).

2.1.4 Monitoring

In practice, there could be discrepancy between the current configuration state of the

system and the desired configuration state defined in the specification at any one time.

This is normal as the implication of latency during the deployment process.

A monitoring tool could be used to provide feedback to the system administrator

who can manually monitor the deployment process. It helps the administrator to de-

termine whether the specification has been completely deployed, or there is an error

during deployment process that needs to be addressed – for example, the administrator

can present an alternative specification to address particular failure. Figure 2.2 shows a

screen capture of the LCFG monitoring tool that displays the status of four machines.

2.1. System Configuration 23

The information from the monitoring tool can be exploited by an intelligent config-

uration tool to provide a better solution. Instead of manually presenting an alternative

specification, the administrator can define a loose specification. Thus, the tool can au-

tomatically compute the alternative desired state as well as the new workflow in order

to address particular failure – for example, a new web service must be installed and

started on a new virtual machine since the old one has failed.

2.1.5 Practical Configuration Tools

This subsection presents a survey of some practical configuration tools which are

known to be used in production systems. The first three tools, i.e. Ansible, Chef,

and Puppet, are very popular – the following table shows the number of Github users

that have starred or forked their main repository. On the other hand, SmartFrog is

mainly used by Hewlett-Packard for their systems.

August 15th, 2014
Tool Total Stars Total Forks

Ansible 7,221 2,221

Chef 2,929 1,200

Puppet 2,561 1,103

2.1.5.1 Ansible

Ansible [Ansible Inc., 2014] was first released in 2012 and quickly gained attention

from the users because of its simplicity. It is using a centralised deployment archi-

tecture where, unlike other architectures, it does not require a specific agent to be

installed and running on the target machines. All parts of the tool are running on a

single machine that acts as the central controller. The execution of the actions on the

target machines are performed using a remote shell execution protocol. However, this

architecture comes with a price that there is a bottleneck issue when the tool is used to

manage a large scale system.

The configuration specification is defined in a custom imperative language based on

YAML [yam, 2014]. We must translate the requirements into an ordered list of actions

(workflow) which will be executed by the tool to achieve the desired configuration.

The sequence of configuration changes can be controlled simply by reordering the

declaration of the actions. Conceptually, this is similar to the imperative scripts where

we must compute the workflow manually.

24 Chapter 2. Background

2.1.5.2 Chef

First released in 2009, Chef [Opscode Inc., 2014] is a configuration tool implemented

in Ruby. A Chef specification is defined using a domain-specification language based

on Ruby. Every requirement must be translated into a specification by defining a set

of idempotent actions that should be executed to achieve the desired configuration. By

default, the order of configuration changes is determined from the declaration order

of the actions. But, this can be overridden by defining partial ordering constraints

(relationships) between the actions.

Chef is implementing a weakly distributed architecture for deploying the specifi-

cation where a chef-server acts as the central controller and every target machine is

controlled by a chef-client. We can use a push mechanism where the chef-server or-

chestrates the execution of the actions across different machines. We can also use a pull

mechanism where every chef-client periodically pulls the specification from the server

and then deploys it to its machine, but there is no guarantee that ordering constraints

are maintained across the machines.

2.1.5.3 Puppet

Initially developed in 2005, Puppet [Puppet Labs, 2014] is perhaps the most popu-

lar configuration tool supported by a large open source community. It has a custom

declarative configuration language that allows us to explicitly define the desired con-

figuration state of the system. The specification contains instances of abstract resource

whose attributes are representing the desired state of the resource. Every value of the

attributes is set based on the requirements.

Puppet deploys the configuration changes in essentially indeterminate order. But

since 2012, the language provides the notation of dependencies between resource com-

ponents (relationships) which can be used to define a partial ordering constraint of the

deployment process between two resource components. In order to avoid a livelock or

deadlock situation, the tool will produce an error whenever it detects cyclical depen-

dencies. However, the ordering constraints are only maintained between components

on the same machine, but not between different machines. On the other hand, manag-

ing dependencies is complex because they are not invariant to the desired state – any

change of the desired state may require a change in dependencies.

Puppet is implementing a weakly distributed deployment architecture with a pull

mechanism. To reduce the bottleneck issue, a system can have one or more central

2.1. System Configuration 25

running

stopped

A
running

stopped

B
running

stopped

C

a2
a1 a3

a4
a5

a6

d1 d2

d3d4

3-tier web application

Figure 2.3: An example of Behavioural Signature model for the 3-tier web application.

servers (puppet-master) that serve a large number of agents (puppet-client). Every

agent periodically pulls and deploys the compiled version of the specification, called a

catalog, onto the target machine.

2.1.5.4 SmartFrog

Smart Framework for Object Groups (SmartFrog) [Goldsack et al., 2009] is a dis-

tributed configuration tool for configuring and managing distributed software systems.

It consists of: a custom declarative configuration language for defining configuration

specifications; a daemon agent, which is a secure, distributed (peer-to-peer) controller

for managing a particular machine; and components, which are software libraries to

implement the configurations. SmartFrog implements a strongly distributed deploy-

ment architecture. The configuration is deployed by pushing the specification to target

machines.

Another feature of SmartFrog is the specification of a model called the Behavioural

Signature [Farrell, 2008] which defines state-dependencies between components so

that a change of state in one component may depend on changes of state in other

components. This can produce a cascade of distributed state changes with a particular

ordering constraint.

Figure 2.3 shows an example of a system that is orchestrated by SmartFrog Be-

havioural Signature model. The system has three components: A (database layer), B

(logic layer), and C (presentation layer), each of which has a set of states and actions.

The state-dependencies denoted by d1, d2, d3, and d4 guard the execution of the actions

that change the state of the components. For example, d1 means that action a3 can be

executed if A is at state running. If all components are at state stopped and the user sets

26 Chapter 2. Background

that the desired state of C is running, then the SmartFrog will automatically execute a1

and then a3 to change the state of A and B to running before executing action a5. The

state-dependencies are manually defined in the configuration specification. They con-

strain the behaviour of components which determine what a component may perform

and when.

The following is a complete SmartFrog specification for an example in figure 2.3:

1 #include "org/smartfrog/components.sf"
2 #include "org/smartfrog/services/dependencies/components.sf"
3 // Prototype component
4 SimpleComponent extends State {
5 sfClass "org.webapps.SimpleComponent";
6 // attributes
7 name TBD; // name of component
8 run false; // state of component
9 // state-transitions

10 tStart extends Transition { // starting the component
11 guard (! LAZY run); // precondition
12 effects extends PolicyEffects {
13 run true; // effect
14 }
15 }
16 tStop extends Transition { // stopping the component
17 guard (LAZY run); // precondition
18 effects extends PolicyEffects {
19 run false; // effect
20 }
21 }
22 }
23 // Prototype of dependencies between two components
24 startDependency extends Dependency {
25 enabled (LAZY on:run); // effect
26 relevant (LAZY by:run); // condition
27 }
28 stopDependency extends Dependency {
29 enabled (! LAZY on:run); // effect
30 relevant (! LAZY by:run); // condition
31 }
32 // Main component contains the specification for WebApps
33 sfConfig extends Model {
34 // artifacts
35 A extends SimpleComponent {
36 name "A";
37 }
38 B extends SimpleComponent {
39 name "B";
40 }
41 C extends SimpleComponent {
42 name "C";
43 }
44 // dependencies between artifacts
45 BStart extends startDependency {
46 on LAZY B; // implies: enabled (LAZY B:run)

2.1. System Configuration 27

47 by LAZY A; // implies: relevant (LAZY A:run)
48 }
49 CStart extends startDependency {
50 on LAZY C; // implies: enabled (LAZY C:run)
51 by LAZY B; // implies: relevant (LAZY B:run)
52 }
53 AStop extends stopDependency {
54 on LAZY A; // implies: enabled (LAZY A:run)
55 by LAZY B; // implies: relevant (LAZY B:run)
56 }
57 BStop extends stopDependency {
58 on LAZY B; // implies: enabled (LAZY B:run)
59 by LAZY C; // implies: relevant (LAZY C:run)
60 }
61 }

The above specification includes (lines 1-2) two files. Lines 4-22 defines proto-

type SimpleComponent which is a common component that will be inherited by other

components. It has attribute sfClass that specifies a Java classpath which contains

the component implementation that will be instantiated by SmartFrog runtime system.

It also has attribute name (the component’s name) and run (true if the component is

running, otherwise false). Their default values are TBD (To Be Defined) and false

respectively. In addition, the prototype has two state-transitions: tStart (lines 10-

15) changes the component’s state from “stopped” (line 11) to “running” (line 13),

and tStop (lines 16-21) changes the component’s state from “running” (line 17) to

“stopped” (line 19).

The specification has two other prototypes (lines 23-31) that defines common de-

pendencies between two components. These prototypes has two attributes whose re-

lationship is that the evaluation value of relevant must be true before the evaluation

value of enabled is true. Lines 24-27 define stop dependency: the component referred

by relevant must be stopped before stopping the component referred by enabled.

Lines 28-31 define start dependency: the component referred by relevant must be

running before starting the component referred by enabled.

The last part (lines 33-61) define the main component sfConfig which contains

the specification of the system. Lines 35-43 define component A, B and C. Every

component uses SimpleComponent as prototype, inheriting attribute sfClass, name6

and run, and also state-transition7tStart and tStop. Lines 45-48 defines dependency

d1, lines 49-52 defines dependency d2, lines 53-56 defines dependency d4, and lines

57-60 defines dependency d3.

6The value of name of each component has been overridden to "A", "B" and "C".
7Based on figure 2.3, A:tStart is a1, A:tStop is a2, B:tStart is a3, B:tStop is a4, C:tStart is

28 Chapter 2. Background

The Behavioural Signature model enables SmartFrog to orchestrate the state-transitions

of components in a distributed way. Unfortunately, the user must compose the model

manually by explicitly defining the state-dependencies in the configuration specifica-

tions. This is clearly error-prone. Although we can use a model checker to ensure

that there is no deadlock/livelock situation, but the resolution of such problem must be

done manually, which is impractical.

On the other hand, during deployment, every SmartFrog component is controlled

by a thread which uses a backward-chaining mechanism to achieve the conditions of

dependency before applying a state-transition. The communications between threads

of different components are performed using Java Remote Method Invocation (RMI).

For a system that has simple dependencies (e.g. the above system), the implementation

of configuration changes is straightforward. However, if a particular component of the

system has a state-transition which has two or more dependencies, then there is no

guarantee that the system transitions are always performed in correct orders. This

issue could bring the system to be unable achieving the desired state.

state1

state2

A
state1

state2

B
state1

state2

C

a2
a1 a3

a4 a5
a6

d1

d2

d3

For example, assume we have a system as illustrated in the above figure. The

current state of the system is:

A.state2, B.state2, C.state2

And the goal state is:

A.state1, B.state1, C.state1

Using a backward-chaining mechanism, C sends messages to A and B concurrently

in order to attain dependency d2 and d3 before executing a5 for achieving the goal.

Hence, there are two possible execution sequences:

1) a3→ a1→ a5

2) a1→ a2→ a3→ a1→ a5

a5 and C:tStop is a6.

2.1. System Configuration 29

Note that the second sequence is possible if A responds to C’s request first (d2) before

receiving another request from B (d1
8). Both sequences are correct since they can

achieve the goal and maintain the dependencies. However, the second sequence may

not be desirable if the execution time of a1 is significant.

On another case, the second sequence is incorrect if a particular action involved in

the transitions is irreversible (e.g. deleting a file). The following figure provides an

example system where this situation may arise.

state1

state2

A
state1

state2

B
state1

state2

C

a1 a3
a4 a5

a6

d1

d2

d3

If A reacts to C’s request first, then the system transitions will be: a1→ dead-state.

Solving this problem requires the user to manually define an explicit ordering con-

straint between dependencies, in this case: d3 ≺ d2. Unfortunately, this is non-trivial

because if there are n dependencies then the number of possible orders is n!. The prob-

lem can be more complex if the system has cascading dependencies. An alternative

solution would be adding an extra dependency where B.state1 is the condition of ac-

tion a1. Unfortunately, determining which new dependency that has to be added is not

always obvious whenever it is done manually, in particular for large scale system. In

addition, if we are not careful, adding a new dependency can raise a deadlock/livelock

condition to the system.

HP Cells

One of the systems which uses SmartFrog is HP Cells. It is a system that provides a

virtual infrastructure (virtual machines, virtual networks and virtual storages) which is

managed entirely using declarative configuration approach [Hewlett-Packard, 2008].

The key feature of Cells is that users can model a desired configuration state of their

system, push the model to Cells, and then Cells will automatically deploy and maintain

the system. Hence, if the user wants to change the configuration of the system, it can

8Dependency d1 means that A should hold its current state (A.state2) until B has finished executing
transition a3

30 Chapter 2. Background

be done simply by changing the model. In addition, Cells can automatically fix any

drift from the desired state. For usability, Cells provides HTTP RESTful APIs through

Cells as a Service (CaaS).

Cells also focuses on security and privacy [Frederic Gittler, 2012] by creating an

isolated virtual infrastructure for each user called as cell. For example, every network

connection from internet to virtual machines of a particular cell, or between virtual

machines of different cells, must be explicitly defined in the configuration model. If

such connection does not exist in the model, then no connection is allowed.

The heart of Cells is the System Cell which runs across all physical machines, each

of which must be running a hypervisor [Banerjee et al., 2012]. Every System Cell

contains two types of component: the host-manager is a component that manages every

action on a physical machine; the core-system is a component that manages a particular

resource such as network or storage. These types of components are implemented as

SmartFrog components which run on SmartFrog runtime systems. Whenever CaaS

receives a model of desired configuration state from a user, it passes the model to

particular host-manager and core-system, which will perform some actions to deploy

the model.

2.1.5.5 Configuration Description, Deployment, and Lifecycle Management

Global Grid Forum (GGF) has been developing specifications of Configuration De-

scription, Deployment, and Lifecycle Management (CDDLM) [Loughran and Toft,

2008]. It is a set of specifications intended to become standards to deploy and man-

age the lifecycle of services on the Grid computing infrastructure. These standards are

platform independent. They have been implemented by several organisations such as

HP Labs (Java9), UFCG10 (Java), NEC (Java), and Softricity11 (.NET).

CDDLM standards has three specifications:

• a Configuration Description Language (CDL) specification, which is an XML

based language to declaratively describe the configuration state of a system as a

hierarchy of components;

• a Deployment API, which is a set of interface that receives a CDL specification,

and then deploys and manages the lifecycle of a system described in the CDL

specification;
9This implementation is based on SmartFrog.

10Unversidade Federal de Campina Grande, Brazil.
11It is now part of Microsoft.

2.2. Automated Planning 31

• a Component Model, which defines interfaces of software components that must

be provided in order to be managed by CDDLM deployment system.

In their assessment report, [Dantas et al., 2006] mentions that CDDLM helps them

to provides a standardised way for deploying and managing the lifecycle of systems

on different infrastructures. Using an EPR (EndPoint Reference)12, any properties of

component can be easily queried and changed when it is necessary. They can also ex-

plicitly specify the relations between components and reuse the component definitions

using CDL prototyping mechanism. However, as CDL is an XML-based language

with rich and complex features, they have difficulties on reading and editing a CDL

specification due to lack of practical tool to help them identifying configuration errors,

which increases the learning curve of CDL.

It is possible to enforce particular ordering constraints of lifecycle transitions be-

tween CDDLM components of a system. These constraints must be manually defined

as a workflow in the CDL specification using control-flow notations such as sequence

and flow [Schaefer, 2006]. Clearly, this is conceptually similar to the imperative

scripts.

2.2 Automated Planning

Automated Planning13 is an area of artificial intelligent (AI) which studies the au-

tomatic deliberation process that chooses and organizes actions by anticipating their

expected outcomes to achieve as best as possible some presented objectives [Ghallab

et al., 2004]. There are various forms of planning based on the type of the actions, for

examples:

• Path and motion planning – this type focuses on synthesizing of a geometric path

in particular space from a current to a destination place which maintains some

trajectory constraints along that path that specifies the configuration space of an

entity such as a truck, a mechanical arm, or a robot;

• Perception planning – this type concerns on generating plans for gathering in-

formation using sensing actions;

12The EndPoint Reference is an interface to manage a deployed CDDLM component [Schaefer,
2006].

13It is also known as “AI Planning”.

32 Chapter 2. Background

• Navigation planning – it combines the motion and perception planning in order

to reach a goal or to explore an area. Mars rovers exploration is an example of

projects that uses this type of planning;

• Manipulation planning – the main objective of this type is handling objects for

building or reconfiguring them e.g. to assembly a rocket space or a car produc-

tion line;

• Communication planning – this type deals with dialogs and cooperations be-

tween several agents or humans in order to achieve particular objectives e.g.

cars sharing system.

A natural approach for solving planning problems are to address the problems with

specific representations and techniques. These domain-specific approaches are well

justified and successful in most of the above application areas. However, they are not

addressing some commonalities of all these forms which are required to understand

the essence of the planning process itself which can help improve the domain specific

approach. In practice, it is easier to adapt some general tools to a specific problem

instead of addressing every planning problem anew.

For these reasons, automated planning concerns on domain-independent approaches

to solve planning problems. Formally, a planning problem can be defined as P =

(Σ,s0,Sg), where Σ = (S,A,γ) is a state transition system, S is a set of all possible

states, s0 ∈ S is the initial state, and Sg ⊂ S is a set of goal states, A is a set of ac-

tions, γ is a state transition function, find a sequence of action π = 〈a1,a2, ...,ak〉 corre-

sponding to a sequence of state transitions 〈s0,s1, ...,sk〉 such that s1 = γ(s0,a1),s2 =

γ(s1,a2), ...,sk = γ(sk−1,ak), and sk ∈ Sg [Ghallab et al., 2004].

A classical planning problem uses a restricted planning model based on the fol-

lowing assumptions [Ghallab et al., 2004]:

A0. Σ has a finite set of states.

A1. Σ is fully observable.

A2. Σ is deterministic.

A3. Σ is static.

A4. The planner handles only restricted goals which are specified as an explicit goal

state sg or a set of goal states Sg.

2.2. Automated Planning 33

A5. A solution plan to a planning problem is a total-order finite sequence of actions.

A6. All actions and events are instantaneous.

A7. The planner ignores any change that may occur in Σ during planning time.

With the above restrictions, a planning problem may look trivial – the problem is

solved simply by searching for a path in a graph. However, even for a simple problem,

the size of the graph Σ can be very large. [Bylander, 1994] shows that in general,

finding a solution plan of a planning problem is a PSPACE-complete problem.

On the other hand, it is hard if not impossible to use the above assumptions to

solve real-world planning problems. For example, planning problems for reconfig-

uring systems of Infrastructure as a Service14 are fully-observable, non-deterministic

(the system can be at more than one possible current states) and dynamic (the system

can be reconfigured to a variable size [Vaquero et al., 2008]).

One of approaches to the non-deterministic problem has been using an execution

monitoring that observes the world state as a plan being executed, and then uses this to

help the controller selecting appropriate actions of the plan [Muise et al., 2011, Shah

et al., 2007]. This can increase the viability of the plans under particular uncertainty

and reduce the needs of re-planning. §5.2 describes an alternative technique that uses

this approach.

An approach to the dynamic size problem is allowing the user to define a loose

specification. Based on the current state generated by the sensor, the tool can automat-

ically computes a particular desired state by scaling up/down the system in order to

achieve particular objectives. [Hewson et al., 2012] is an example work that has been

using a constraint solver to generate such desired state. In order to have a complete

solution, an automated planner can then be used to generate a workflow to bring the

system from current to the desired state.

On the other side, it is possible to relax some restrictions of the classical planning

model for some reasons, for example: to increase the expressivity of the representation

so that the problem objectives can be expressed more natural. §4 presents techniques

that relax two assumptions:

• Relaxing assumption A4 (restricted goals) – we might want to specify the ex-

tended goal of the planning problem where the objectives of the plan not only

concern on the final state but also on every visited states;

14Infrastructure as a Service (IaaS) is one of types of cloud systems.

34 Chapter 2. Background

• Relaxing assumption A5 (sequential plans) – in some situations, plans whose

actions are partially ordered are more desirable than totally ordered e.g. to enable

parallelism of actions execution which can reduce execution time.

The approaches of solving planning problem can be classified into two groups.

The first is an optimal planning which aims to find a plan with the lowest cost that

can achieve the goal. And the second is a satisficing planning which aims to find any

plan that can achieve the goal, regardless of its cost. The optimal planning is preferred

whenever the cost of the plan is important. On the other hand, the satisficing planning

is preferred whenever the planning time is more important than the cost of the plan –

we need to find a plan as quickly as possible.

2.2.1 STRIPS Representation of Classical Planning

In 1971, Richard Fikes and Nils Nilsson developed an automated planner called Stan-

ford Research Institute Problem Solver (STRIPS) to solve planning problems of robotic

domain. Later on, the language used in the STRIPS planner became the standard for-

malism to define a classical planning problem.

In STRIPS, we define a classical planning problem in a first-order language L
which consists of a finite set of predicates Lp, an infinite set of variables Lv, and a

finite set of constants Lc. A constant represents an object in the domain. A variable

represents any arbitrary constant of the domain. And a predicate represents the relation

between objects in the domain.

An atomic formula in L is a single predicate with constants and/or variables. A

ground atomic formula (ground atom) is a single predicate with constants only. A

state in L is represented by a set of ground atoms.

A STRIPS planning problem can be formally defined as follows:

Definition 2.1 (STRIPS Task [Fikes and Nilsson, 1971]).
A planning problem in STRIPS representation (STRIPS task) is given by 4-tuple ϒ =

〈P,A, I,G〉, where:

• P is a finite set of atomic formulas of L ;

• A is a set of actions, each action a ∈ A is a 3-tuple 〈name,pre,eff〉 where name is

the name of action, pre is a finite set of ground atoms called as the preconditions,

and eff is a finite set of ground atoms called as the effects;

2.2. Automated Planning 35

• I is a finite set of ground atoms called as the initial state;

• G is a finite set of ground atoms called as the goal.

�

There are two types of action preconditions: positive preconditions (pre+) and neg-

ative preconditions (pre−). If s is the state of the world, then action a is applicable in s

if all atoms in positive preconditions are in s, and all atoms in negative preconditions

are not in s.

On the other hand, there are also two types of action effects: positive effects

(eff+) and negative effects (eff−). If action a is applied to state s, then the new state

s′ = (s\eff−)∪ eff+ (add all positive effects to, and removes all negative effects from

the state). Atoms not mentioned in the effects are assumed not to change during the

application of the action (closed world assumption).

2.2.2 Planning Domain Definition Language

Although we can define a classical planning problem using the above formalism, we

still need a language to define a planning problem in a more efficient and effective

way. In 1998, [McDermott et al., 1998] introduced the Planning Domain Definition

Language (PDDL) that was originally designed to be used in the International Planning

Competition (IPC). Nowadays, it has become a standard language of the automated

planning community to define planning problems from various domains.

PDDL was developed based on STRIPS representation with some additional fea-

tures that ease us to define a planning problem. Unlike STRIPS, PDDL allows us to

define types to limit the possible constants that can substitute a particular variable.

For example, the objects service_a and service_b can all be grouped by the type

service so that the variable ?s - service can only be instantiated as one of the two

services. Although this does not introduce a new capability15, but this improves the

readability and writing of planning problems.

Another feature is that we can use either existential or universal quantification in

the PDDL action preconditions and goal formula. For example, we can have (forall

(?s - service) (running ?s)) as the goal formula of the planning problem. If

the planning domain has two constants of type service e.g. a and b, then the goal

formula can be grounded as (and (running a) (running b)).
15Any typed domain can be rewritten into untyped domain simply by adding a unary predicate for

each type along with necessary atoms for constants that uses the type.

36 Chapter 2. Background

The most recent version of PDDL (version 3) [Gerevini et al., 2009] allows us to

define a planning problem with extended goals. It introduces new notations to express

the constraints about the structure of the desired plan (state-trajectory constraints) as

well as the goal that should be achieved by the plan – this relaxes assumption A4 of

the restricted model of the classical planning problem. More details about PDDL3 will

be discussed in §4.

In PDDL, every planning problem is defined into two separated files. The first

file is describing the domain of the planning problem (PDDL Domain file), which

mainly contains lists of types, predicates, and actions. The second file is describing the

planning problem itself (PDDL Problem file) which contains the objects, initial state,

and the goal state – in PDDL3, the state-trajectory constraints is defined in the PDDL

Problem file. Examples of PDDL Domain and Problem files can be found in appendix

§C.

In practice, to solve a PDDL planning problem, some planners will first parse the

PDDL Domain and Problem files and then transform the problem into a STRIPS-like

representation. This transformation will ground the actions by substituting every vari-

able with a particular object based on the type. The planner may also eliminate all

first-order (existensial and universal) quantifications from the actions’ preconditions

and the goal formulas. The planners then apply particular search techniques to find a

solution plan.

2.2.3 Finite Domain Representation of Classical Planning

As mentioned above, some planners are transforming the planning problem into a

STRIPS-like representation before starting the search process. This basic representa-

tion has helped researchers in developing various successful search techniques. How-

ever, some modern planners are using another basic representation which has some

properties that can be exploited further for more efficient search techniques. The alter-

native representation that is commonly used right now is the Finite Domain Represen-

tation16 (FDR) [Helmert, 2009].

FDR is based on the SAS+ planning representation [Bäckström and Nebel, 1995].

The main idea of FDR is to group a set of mutually exclusive ground atoms (facts) into

a variable. This means that only one value can be assigned to the variable at particular

time during the execution of the plan. For example, a robot can only be in one place at

16Some papers are using another name i.e. the Multi-valued Planning Tasks representation.

2.2. Automated Planning 37

the same time. This invariant property can be exploited later by the planner during the

search process.

A classical planning problem can be defined in a Finite Domain Representation

(FDR) as follows:

Definition 2.2 (Finite Domain Representation Task [Helmert, 2009]).
A planning problem in finite domain representation (FDR task) is given by 4-tuple

Π = 〈V,A,s0,sg〉 where:

• V = {v1, ...,vn} is a set of state variables, each of which is associated with a finite

domain Dv. If d ∈ Dv then we call the pair v = d an atom. A partial variable

assignment over V is a function s on some subset of V such that s(v) ∈ Dv,

wherever s(v) is defined. If s(v) is defined for all v ∈V , then s is called a state;

• A is a set of actions, each of which is a 4-tuple 〈name,cost,pre,eff〉, where name

is a unique symbol to distinguish an action from others, cost ∈ R0+ is a non-

negative cost, while pre and eff are partial variable assignments called precondi-

tions and effects respectively;

• s0 is a state called an initial state and sg is a partial variable assignment called

the goal.

�

An FDR action a is applicable in state s if every atom of the action preconditions

is in s. Applying the action a to state s will assign new value to variables as defined in

the action effects.

[Helmert, 2009] stated that some planning approaches can get a significant benefit

from using FDR. For examples: planners that use decomposition techniques, such as

the causal graph heuristic [Helmert, 2004, Helmert and Geffner, 2008] and the multi-

agent decomposition heuristic [Crosby, 2014], benefit from a simpler causal structure

of the FDR variables; planners that use landmarks heuristics [Richter and Westphal,

2010] can compute the landmarks in a more efficient way by exploiting the domain

transition graph of the FDR variable domains.

2.2.4 Heuristic Search

As mentioned above, [Bylander, 1994] has shown that in general, solving a planning

problem is a PSPACE-complete problem. This makes a naive search approach to

38 Chapter 2. Background

be very inefficient. This fact encourages researchers to develop heuristic search ap-

proaches that use particular evaluation function to guide the search. This approach can

significantly reduce the search time by exploiting particular structures available in the

planning problem in order to compute the appropriate evaluation function. To gain

a significant benefit, the evaluation itself must be computed in reasonable time e.g.

polynomial-time.

The approaches are based on the best-first search technique which is an instance

of the general graph-search algorithm in which a node is selected for expansion based

on evaluation function f (n) [Russell and Norvig, 2009]. The value of the evaluation

function is used to determine the node that will be expanded, in this case the node with

the lowest evaluation will be expanded first.

The choice of f determines the strategy of the search algorithm. If f only has a

heuristic function h(n) component, then the algorithm is using greedy search strategy,

that is: f (n) = h(n). Other strategies may have two components of the evaluation

function. For example, A∗ search strategy is combining the path cost from the start

node to node n, g(n), with the heuristic function, that is: f (n) = g(n)+ h(n). Every

search strategy has its own property. Greedy search is very fast in finding a solution

when we have a good heuristic function, but it is also incomplete17. A∗ search is

commonly slower than greedy search, but it is complete18 since it will always back-

tracks if it finds a dead-end. If we use an admissible heuristic function19 with A∗

search, then it will be guaranteed that the solution will be globally optimal.

This subsection introduces two techniques for estimating the heuristic h(n), which

are used in this thesis. The first is the FastForward heuristic (hFF) that estimates the

heuristic by relaxing the planning problem. The second is the Landmarks heuristic

(hLM) that estimates the heuristic by computing the number of invariant atoms that

should be achieved by the plan.

2.2.4.1 FastForward Heuristic

The FastForward heuristic (hFF) was first introduced by the FastForward (FF) planning

system in 2001 [Hoffmann and Nebel, 2001] that has won numerous awards at the

International Planning Competition. The computation of hFF is quite simple and only

required polynomial-time. It also returns relatively an accurate estimation.

17It may not find a solution even though the solution exists.
18It will find a solution when the solution does exist.
19A heuristic function is admissible if it never overestimates the real cost of the node to reach the

goal.

2.2. Automated Planning 39

The basic idea of hFF is relaxing the planning problem by ignoring all negative

effects when applying an action to the state – a robot can be in two or more places at

a time, for example. This basic idea can be applied when we use STRIPS encoding20.

Since all negative effects are ignored, then the application of the action will increase

the number of atoms of a state, which increases the possibility of other actions to be

applicable at the next state. Any action can be applied immediately since it does not

have any negative consequence.

The heuristic function is calculated using a relaxed planning graph21. To create a

relaxed planning graph, we start from the initial state. Then, we search every applicable

action and then add to the graph if it has not been used before. When applying the

action, all positive effects of the action are added to the state to produce the next state.

This is done repeatedly until no more actions can be added to the graph or the state has

satisfied the goal.

To generate an accurate heuristic estimation, the algorithm will extract a relaxed

plan from the relaxed planning graph. For each goal position, the algorithm can trace

a backward route through the graph to the initial state. The actions that appear in the

route are the relaxed plan of the relaxed planning problem. The number of actions in

the plan will determine the heuristic value which can help guiding the search.

In FF planning system, the solution plan is found using a greedy forward search

from the initial state. An action is selected if it is applicable and it has the lowest

heuristic value. If no improved successor can be found, then this greedy search returns

failure and the FF planning system will switch to use A∗ search using the same heuristic

calculation. Empirically, the greedy search is good enough to find a solution plan for a

large number of existing planning domains.

2.2.4.2 Landmarks Heuristic

[Porteous et al., 2001, Hoffmann et al., 2004] introduced techniques on using land-

marks for guiding the heuristic search. They define landmarks as facts (propositions)

that must be true at some point in every valid solution plan. It was preceded by earlier

works such as [Koehler, 1998] that provide hints about the order in which the goals

20[Helmert, 2006] adapted this idea for FDR encoding by allowing the variables to hold more than
one value after applying an action to the state.

21Planning graph [Blum and Furst, 1997b] uses a graph structure where nodes correspond to world
state propositions and actions, and arcs correspond to preconditions and effects of actions. The algo-
rithms expand the graph from the initial state until reaching the last layer that contains all goals which
must not be mutually exclusive. The solution (plan) can be found by applying a backward-search algo-
rithm from the last until reaching the first proposition layer.

40 Chapter 2. Background

should be achieved.

For example, if a robot wants to move from room X to room Y and there is a door

between the rooms, then based on the definition, the goal location(robot,Y) is a

landmark and the fact doorOpen(X,Y) is also a landmark. We can also conclude an or-

dering between these two landmarks, that is: doorOpen(X,Y)→ location(robot,Y).

Conceptually, to achieve the goal, the algorithm will first find a partial plan from the

initial state to a state that makes true the landmark doorOpen(X,Y), and then find

another partial plan from this state to the goal.

The LAMA planning system [Richter and Westphal, 2010] has used landmarks

for estimating the heuristic, and it has been proved to be very successful receiving

awards in the International Planning Competition. It uses an adapted technique for

FDR encoding [Richter et al., 2008] that exploits the structure of the domain transition

graph22(DTG) to efficiently generating the landmarks.

There are several steps to generate the landmarks. First, by definition, every goal is

a landmark. This is because the goal must be true in any plan. And then for each goal

variable, the algorithm checks the variable’s DTG if there is a node (variable value)

that occurs on every path from the initial value to the goal value, then this node is also

a landmark, which can be naturally ordered before the goal value. After all landmarks

have been generated, additional natural orderings are introduced. For all landmark A

and B, if A occurs before B in the relaxed planning graph, then an ordering A→ B is

added.

As mentioned above, landmarks can be used as intermediary goals. Instead of

searching the goal, the algorithm will iteratively aim to achieve a landmark that is

minimal with respect to the orderings using another heuristic technique such as hFF

. However, [Hoffmann et al., 2004] observed that the solution plans are often longer

than the ones produced by standard hFF , or sometimes it leads to dead ends.

[Richter et al., 2008] introduced a straighforward way to using landmarks to guide

the search by counting the number of landmarks that still need to be achieved from

particular state onwards. Assume l is this number, it will estimate the goal distance

from the state, and it is computed using an equation: l = n−m+k, where n is the total

number of landmarks, m is the number of accepted landmarks, and k is the number of

accepted landmakrs that are required again. Empirically, using this simple landmarks

counting in the best-first search leads to good results in some planning domains.
22The domain transition graph of a state variable v of an FDR task is the directed graph where nodes

are the possible values of v, an arc 〈d,d′〉 is included in the graph iff d 6= d′ and there is an action whose
preconditions pre(v) = d or pre(v) undefined, and effects eff(v) = d′ [Helmert, 2009].

2.3. Syntax and Semantics 41

2.3 Syntax and Semantics

This section provides the backgrounds of the notation and style of the semantics used

in §3.

2.3.1 Syntax

The syntax of a language defines the strings of characters which make meaningful

statements in the language. This is usually expressed using a context-free grammar

such as Backus-Naur Form (BNF). For example:

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
number ::= digit | digit number

Any finite number of a certain element can be listed explicitly. The above equations

define two elements. The first is a digit element that must be a 0, a 1, ..., or a 9. The

second defines a number which may have a digit structure, or a digit concatenated with

something that has a number structure.

On the other hand, we can use recursion to specify an infinite number of elements

(e.g. number element above), or we can use the Kleene (...)∗ or (...)+ whose meaning

are the same as in the regular expression.

The literal strings that appear in the language itself is written using typewriter

font. Every class of elements is called as non-terminal symbols which is written in

italics fonts.

Studying the semantics of a language usually deal with slightly higher-level con-

cepts representation by some abstract syntax, which defines sets of abstract phrases

that are independent of any particular representation, but which also provides a simple

representation for these phrases [Reynolds, 1998]. This would typically include termi-

nals such as number, identifier, or string, as well as non-terminals elements without

describing their details representation as input strings.

2.3.2 Semantics

The syntax of a language defines expressions that are legal in the language, but it does

not specify about the meaning of those expressions. A syntactically correct config-

uration specification will be successfully compiled, but the language syntax itself is

insufficient to provide information about the configuration that will appear when the

specification is deployed.

42 Chapter 2. Background

Thus, the semantics of the language [Schmidt, 1997] is required to provide the def-

initions of the meaning of every element that appears in the specification. For example,

although the following strings are written using different syntax, but intuitively they

actually have the same meaning (semantics):

21

twenty one

XXI

0x15

There are several different approaches to specifying the semantics of program-

ming languages. However, declarative configuration languages, such as SmartFrog

language, are quite different from most programming (or scripting) languages – they

define the characteristics of the intended configuration rather than the process of de-

ploying that configuration. In addition, they often emphasise additional features which

may not be prominent in a mainstream programming language, for examples: pro-

totypes, value-inheritance, and composition. This motivates our choice of the deno-

tational approach to the semantics rather than an operational or axiomatic approach.

This is similar with the approach normally used in other domains such as database

query languages.

2.3.3 Denotational Semantics

The denotational semantics defines the meaning of a language by mapping the expres-

sions directly to their meanings called denotations, which are usually mathematical

values such as a number or a function [Schmidt, 1997]. The basic structure of the

semantics involves: the abstract syntax, the semantic algebra, and the valuation func-

tions.

2.3.4 Semantic Algebra

A set of elements that share a common property or use can be grouped together into

a semantic domain. For example, all numbers can be grouped into a natural numbers

domain. Accompanying the domain is a set of semantic operators, that operates over

the elements of the domain e.g. × is a binary operator that multiplies two numbers

and returns another number. A semantic domain together with its semantic operator is

called semantic algebra.

2.3. Syntax and Semantics 43

Using the algebra, we can construct expressions in particular domains. This rep-

resentation can be simplified to produce the simplest representation as the final result.

The simplification itself should preserve the underlying meaning of the expression.

2.3.5 Valuation Functions

A valuation function defines how to map the elements of the syntax into their meaning

(a denotation). For example23:

FJ21K := 21

FJtwenty oneK := 21

FJXXIK := 21

FJ0x15K := 21

Note that the left hand side elements (typewriter fonts) are literal strings which

appear in the source language, while the right hand side elements (roman fonts) are

abstract numbers. The functions show that the meaning of all elements are the same:

21 is the same as twenty one, and so on.

We can use a similar way in recursive syntax to define the semantics of literal

strings of arbitrary length. For example, the following equations define the meanings

of a binary numbers language:

FJ0K := 0

FJ1K := 1

FJN 0K := 2×FJN K

FJN 1K := 2×FJN K+1

Note that N is a string literal of binary digits (0 or 1), and FJN K is the denotation of N

(the number represented by the string literal N).

By extending the semantics, we can create similar expressions for the other repre-

sentations. For example, the following two expressions have different syntaxes:

expr := number | (mul expr expr)

expr := number | expr * expr

but they have the same semantics:

FJ(mul expr expr)K := FJexprK × FJexprK

FJexpr * exprK := FJexprK × FJexprK

Note that * on left-hand side is a string literal of the source language, while × is the

abstract mathematical multiplication operator.
23:= is read as “is define as”.

44 Chapter 2. Background

2.4 Summary

Unlike imperative ones, practical declarative configuration tools guarantee that the fi-

nal state of the system would match to our requirements since it is explicitly defined

in the specification. But they cannot guarantee that the ordering constraints of config-

uration changes are maintained across multiple machines. Solutions offered by some

tools, e.g. SmartFrog (Behavioural Signature model) and CDDLM (control-flow), can-

not completely solve this issue because the ordering constraints must be manually de-

fined. This is conceptually similar to imperative scripts.

Some previous works have shown that the automated planner is a viable solution to

the above problem – the planner automatically generates a workflow that can bring the

system to the desired state from an arbitrary state while preserving the ordering con-

straints. However, we are not aware of previous works that allows us to define global

constraints as part of the goals. On the other hand, we cannot find any practical declar-

ative language that has notions of actions and global constraints which are required in

the planning process. This makes difficult for practical declarative tools to make use

of the planner.

Some configuration tools have been implementing a weakly distributed architecture

to avoid bottleneck and single point of failure issues, which is commonly exist in a

centralised system. This type of architecture can also retain some degree of centralised

control where the fully-distributed cannot provide. We are not aware of previous works

of dynamic-workflow approach that has been using a weakly distributed architecture.

The planning problem for reconfiguring cloud systems are non-deterministic and

dynamic. Although the problem cannot satisfy several assumptions of classical plan-

ning, but we can still use a classical planner as part of the framework to solve the

problem, in particular for generating a plan to bring the system from current to the

desired state.

Chapter 3

Modelling Configuration Changes

The configuration specification defined in a particular language plays an important role

in every configuration tool because it drives any change during deployment. Any mis-

understanding by the user or misinterpretation by the tool on the specification will yield

undesired result that can threaten the operation of the system. Thus, it is necessary to

have a clear formal semantics of the configuration language which is independent from

the implementation. This will give us some benefits:

• The formal semantics acts as a precise, independent reference for developers,

so that we can confidently create different implementations with the same be-

haviours.

• It is easier to create interoperable tools for generating, analysing, refactoring, and

visualising configurations, for example: automatically analysing the provenance

of configurations for fault and security analysis.

• The process of formalising the semantics can expose ambiguities and other is-

sues with the language itself.

• It is easier to extend the language since every element has a precise definition

and meaning.

We are not aware of any document that provides the formal semantics of the declar-

ative configuration languages that are used in real ”production“ system such as the

SmartFrog language [Goldsack et al., 2009].

On the other hand, we have not found any declarative configuration language that

has the notions of actions and the global constraints. With the absence of these no-

tions, the automated planner cannot use the configuration specification for computing

45

46 Chapter 3. Modelling Configuration Changes

sound workflows between any two viable states. Using a separated language such as

PDDL for describing the actions and the global constraints is not a good solution be-

cause it lacks desired features which are available in practical configuration languages

such as object-oriented modelling, inheritance, and composition. In addition, a mixed

representation is difficult to be accepted because the administrators have to learn two

languages at the same time, where both have different semantics – this is clearly error-

prone.

This thesis describe a work to extend the SmartFrog (SF) language for introducing

the notions of actions and the global constraints. However, introducing new notations

in the language is not an easy task since this could introduce ambiguities to the lan-

guage itself. Thus, we first formalised the SF semantics, and then used this formal

semantics as the foundation to extend the language.

This chapter describes two contributions of this thesis. The first is the formal se-

mantics of the core subset of SmartFrog (SF) language using denotational semantics

approach. The second is extending the SF language to introduce a static-type sys-

tem and new notations for describing actions and global constraints. This extention is

called SFP language which will then be used in the rest of this thesis.

This chapter is organised as follows. The first section provides a brief introduction

of SF language by examples. It is then followed by a section that describes the formal

semantic of the core subset of SF language. The next section provides a brief intro-

duction of SFP language by examples. Finally, the formal semantic of SFP language

is described in the last section.

3.1 SmartFrog by Example

SmartFrog (SF) language is a dynamic-typed prototype based language for specifying

the declarative configuration state of a system. The configuration is described as a col-

lection of variables, each of which can be assigned with a primitive value i.e. boolean,

numeric, and string, a reference, a vector or a component – an SF component is similar

to an object. A component can have a set of attributes that could be assigned with par-

ticular (untyped) value. Several components can be composed in a tree-like structure

by assigning a component to an attribute of another component. The following exam-

ple provides a brief introduction on how to specify the configuration state of a system

in SF.

Assume that we want to have a system whose desired state is depicted in figure 3.1.

3.1. SmartFrog by Example 47

Figure 3.1: An example system that consists of two web servers and two clients.

It consists of four machines: server s1 and s2, and client pc1 and pc2. Each machine

has attribute dns that holds the address of the DNS server. Each server has service web

that serves at port 80 and can be at state running or stopped. Both pc1 and pc2 are

referring to service web in s1.

The best way to model this system in SF is using the notion of prototyping where

an object can be a prototype of another object. This enables code reuse through in-

heritance as well as composition where the value of every inherited attributes could be

overridden with any specific value. On the other side, SF has a notion of reference that

can represent the dependency of one to another component.

Listing 3.1 shows the specification of the example system in SF. Lines 1-3 are the

descriptions of a prototype component named Machine with attribute dns which holds

the address of the DNS server. Lines 4-7 describe another prototype component named

Service with two attributes: running and port that hold the service’s state and port

number respectively. Lines 8-19 specify of the main component named sfConfig,

which holds the final descriptions of the system. Lines 9-11 describe server s1 that

uses Machine as the prototype. In addition to dns (inherited from Machine), it has

attribute web which represents a service running on server s1. Lines 12-14 describe

server s2 that uses s1 as prototype where the inherited value of web.running (true)

is overridden with false. Lines 15-17 specify client pc1 which uses Machine as the

prototype. It has an additional attribute named refer that represents the reference to

48 Chapter 3. Modelling Configuration Changes

Listing 3.1: The SF specification of the system in figure 3.1.
1 Machine extends {
2 dns "ns.foo";
3 }
4 Service extends {
5 running true;
6 port 80;
7 }
8 sfConfig extends {
9 s1 extends Machine {

10 web extends Service;
11 }
12 s2 extends s1 {
13 web.running false;
14 }
15 pc1 extends Machine {
16 refer DATA s1:web;
17 }
18 pc2 pc1;
19 }

the service on server s1. Since keyword DATA precedes the reference, then it is kept

as the value and not resolved – this type of reference is called as data reference. Line

18 defines another client pc2 that is assigned with a reference of pc1. Since it is not

preceded by keyword DATA, then the reference is resolved by the compiler where the

dereference value is copied and assigned to pc1 – this type of reference is called as

link reference. Finally, every variable defined inside main component sfConfig is

presented as the final specification. Figure 3.2 shows the output from the compiler

presented in YAML [yam, 2014], which is an evaluation of the main sfConfig object.

The above example covers most of the SF core features i.e. prototyping, com-

ponent (object), primitive value, data reference, link reference, and main component

(sfConfig). Vector is not shown in the example. It is similar to the standard list data

structure where you can create a list of any basic value (primitive, data reference, or

vector). For example:

1 sfConfig extends {
2 myvector [true, 1, "a string", [false, 0]];
3 }

The next section defines the formal semantic of the core features using denotational

semantic.

3.2. Formal Semantic of SmartFrog Language 49

1 s1:
2 dns: "ns.foo"
3 web:
4 running: true
5 port: 80
6 s2:
7 dns: "ns.foo"
8 web:
9 running: false

10 port: 80
11 pc1:
12 dns: "ns.foo"
13 refer: s1:web
14 pc2:
15 dns: "ns.foo"
16 refer: s1:web

Figure 3.2: The compiler output of SF specification in listing 3.1 in YAML.

3.2 Formal Semantic of SmartFrog Language

The SF semantics consists of three parts: the abstract syntax (§3.2.1), the semantic al-

gebras (§3.2.2), and the valuation functions (§3.2.3). It is using the notations described

in §2.3.

Non-formal
Documentations

Define the formal
semantics

Formal
semantics

Develope a
compiler

Formal semantics
compiler

Production
compiler

Testing and comparing
the results Incompatibilities

Review by the
language’s creator

Comments

Final version of the
formal semantics

1

2

34

5

6

7

89 10

11

Figure 3.3: The process for developing the formal semantics of SmartFrog language.

50 Chapter 3. Modelling Configuration Changes

Figure 3.3 shows the process used for developing all parts of this semantics, which

can be described in details as follows1:

• First, we used (1) a non-formal documentation of the SmartFrog language to (2)

define the semantics.

• This (3) formal semantics was then given to (4) the language’s creator to be re-

viewed, and then we refine the semantics based on (5) his feedbacks (comments).

• For further validation, the formal semantics was used as (6) a single reference for

developers to develop (7) the compilers. These compilers were then (8) tested

using: manually written specifications containing edge-cases, example specifi-

cations in the SmartFrog software distribution, and specifications generated by

an automated program. The test outputs of the compilers were compared againts

(9) the existing production compiler in order to find any (10) incompatibility.

Any finding will then be used to refine the semantics.

• Finally, after the creator has agreed that the formal semantics is correct, and the

compilers developed from the semantics were producing outputs which are com-

patible with the production compiler, then (11) the final version of the semantics

was released.

3.2.1 Abtract Syntax

Definition 3.1 (SF Terminal Symbols). These are the basic symbols of the language

which appear in the source code:

Bool ∈ Boolean

Num ∈ Number

Str ∈ String

Null ∈ NullValue

I ∈ Identifier

�

Definition 3.2 (SF Non Terminal Symbols). These are the non-terminal elements of

the syntax:

1Each number represents the component in figure 3.3

3.2. Formal Semantic of SmartFrog Language 51

SF ∈ SFSpecification

B ∈ Block

A ∈ Assignment

P ∈ Prototype

V ∈ Value

R ∈ Reference

DR ∈ DataReference

LR ∈ LinkReference

Vec ∈ Vector

BV ∈ BasicValue

�

Definition 3.3 (SF Abstract Syntax). The non-terminals are defined by the following

abstract syntax. Note that the syntax does not specify the details of the concrete syntax

– for example, an assignment includes a reference and a value, but we do not care about

the punctuation or the keywords which are used to represent this in the source code (see

appendix A.1 for the SF concrete syntax).

SF ::= B

B ::= A B | ε
A ::= R V

V ::= BV | LR | P
P ::= R P | B P | ε

BV ::= Bool | Num | Str | Null | Vec | DR

LR ::= R

DR ::= R

Vec ::= (BV)∗

R ::= I | I R

�

The symbol ε represents the empty string, and (L)∗ and (L)+ represent possibly-empty

and non-empty lists of elements of type L respectively.

52 Chapter 3. Modelling Configuration Changes

3.2.2 Semantic Algebras

3.2.2.1 Semantics Domains

The primary semantic domain is used to represent the output of the compilation pro-

cess – since SF is a declarative configuration language, then this output represents the

configuration that will appear when the specification is deployed. For the SF com-

piler, this domain is a tree of attribute-value pairs. For example, after compilation, the

following SF specification:

1 a extends {
2 c 3;
3 }
4 b extends {
5 }

would be represented as follows:

Definition 3.4 (List Data Structure). Elements of (L)∗ are lists of L-elements: l1 ::

l2 :: ... :: ln :: ∅L, n≥ 0, and ∅L represents an empty list. If x = l1 :: l2 :: ... :: ln :: ∅L,

then |x|= n and l′ ∈ x iff ∃i . l′ = li. �

We use the store domain as the primary domain. This domain models a computer

memory as a tree of variable-value pairs.

Definition 3.5 (The primary domain). Formally, the Store domain S = (I×V)
∗, is a

list of identifier-value pairs, where V =V∪S . We use ∅S to represent an empty store,

and V⊥ = V ∪{⊥} for a lifted primary domain which includes the undefined value⊥.

�

Definition 3.6 (The secondary domains). The values of the attributes belong to one

of these secondary domains:

I is the identifier domain;

B= {True,False}, is the boolean domain;

N = {Null}, the null domain;

R is the real number domain;

3.2. Formal Semantic of SmartFrog Language 53

S is the string domain;

R = {ri |ri ∈ (I)∗}, is the reference domain where ∅I represents an empty reference;

L = {li | li = 〈link,ri〉,ri ∈R }, is the link reference domain where link is a tag symbol;

B = B
⊎
R

⊎
S
⊎

R
⊎

N
⊎
{vi |vi ∈ (B)∗}, is the basic value domain;

C is the constraint domain;

A is the action domain;

V= B
⊎

L
⊎
C

⊎
A, is the value domain. �

Note that C and A are not used in this semantics. The purpose of including them in

the definition is solely because the domains and their operators and functions will be

reused later in section 3.4.

Notice that a reference is the sequence of identifiers specifying the “path” to a

particular attribute in the tree structure. An empty reference (∅I) refers to the root. A

reference can be written as a concatenation of an identifier with another reference, for

example: r := id :: r′, where id ∈ I and r,r′ ∈ R . On the other hand, vectors may be

nested, and in particular a single-element vector is not the same as the element itself.

The above example specification can be represented using store s as follows:

s = 〈a,〈c,3〉 :: ∅S 〉 :: 〈b,∅S 〉 :: ∅S

3.2.2.2 Semantic Operations

This section defines the fundamental operations on the semantic domains. These are

analogous to the basic arithmetic operations in the examples from §2.3.2 – in this case,

they operate on the above primary and secondary domains rather than natural numbers.

Definition 3.7 (Operator ⊕).
⊕ is a binary operator that returns the concatenation of the operands. Either operand

may be an identifier or a reference, but the result is always a reference.
⊕ : I× I → R ⊕ : I×R → R
id1⊕ id2 := id1 :: id2 :: ∅I id⊕ r := id :: r

⊕ : R ×R → R ⊕ : R × I → R
∅I⊕ r := r ∅I⊕ id := id :: ∅I

(id :: r)⊕∅I := id :: r (id :: r)⊕ id := id :: (r⊕ id)

(id :: r1)⊕ r2 := id :: (r1⊕ r2)

Where :: is the concatenation operator which prepends a value to a list, r is a list of

identifiers, and ∅I is the empty list. �

54 Chapter 3. Modelling Configuration Changes

Example.
a ⊕ b = a :: b :: ∅I

a ⊕ b :: c :: ∅I = a :: b :: c :: ∅I

b :: c :: ∅I ⊕ a = b :: c :: a :: ∅I

a :: b :: ∅I ⊕ c :: d :: ∅I = a :: b :: c :: d :: ∅I

Definition 3.8 (Operator).
	 is a binary operator that returns the first operand with any common prefix removed.

	 : R ×R → R
∅I 	 r := ∅I r 	 ∅I := r

(id :: r1) 	 (id :: r2) := r1	 r2 (id1 :: r1) 	 (id2 :: r2) := id1	 r1
�

Example.
a :: b :: ∅I 	 a :: b :: ∅I = ∅I

a :: b :: ∅I 	 a :: b :: c :: ∅I = ∅I

a :: b :: c :: ∅I 	 a :: b :: ∅I = c :: ∅I

a :: b :: c :: ∅I 	 a :: b :: d :: ∅I = c :: ∅I

Definition 3.9 (Operator ≡).
≡ is a binary operator that returns True if two references are equal, otherwise it returns

False.

≡ : R ×R → B
∅I ≡ ∅I := True

id :: rest ≡ ∅I := False

∅I ≡ id :: rest := False

id1 :: rest1 ≡ id2 :: rest2 := (id1 = id2)∧ (rest1 ≡ rest2)
�

Example.
a :: b :: ∅I ≡ a :: b :: ∅I = True a :: b :: ∅I ≡ a :: c :: ∅I = False

a :: b :: ∅I ≡ a :: ∅I = False

Definition 3.10 (Operator ⊆R and ⊂R).
⊆R and ⊂R are true if the left reference is a strict or non-strict prefix of the right one.

3.2. Formal Semantic of SmartFrog Language 55

⊆R : R ×R → B ⊂R : R ×R → B
r1 ⊆R r2 := ((r1	 r2) =∅I) r1 ⊂ r2 := (r1 ⊆ r2)∧¬(r1 ≡ r2)

�

Example.
a :: b :: ∅I ⊆R a :: b :: ∅I = True a :: b :: ∅I ⊂R a :: b :: ∅I = False

a :: b :: ∅I ⊆R a :: b :: c :: ∅I = True a :: b :: ∅I ⊂R a :: b :: c :: ∅I = True

a :: b :: d :: ∅I ⊆R a :: b :: c :: ∅I = False

a :: b :: d :: ∅I ⊂R a :: b :: c :: ∅I = False

Definition 3.11 (prefix).
The prefix function returns the longest strict prefix of the given reference.

prefix : R → R
prefix(∅I) := ∅I

prefix(id :: ∅I) := ∅I ,whereid ∈ I
prefix(r :: id :: ∅I) := r :: ∅I ,wherer ∈ R

�

Example.

prefix(a :: ∅I) = ∅I prefix(a :: b :: c :: ∅I) = a :: b :: ∅I

Definition 3.12 (put).
The put function updates the value of an identifier in a store, or adds it if it does not

already exist. Notice that this operates only on single identifier – the following function

(bind) extends this to support hierarchical references.

put : S × I×V → S
put(∅S , id,v) := 〈id,v〉 :: ∅S

put(〈id,vs〉 :: sp, id,v) := 〈id,v〉 :: sp

put(〈ids,vs〉 :: sp, id,v) := 〈ids,vs〉 :: put(sp, id,v)
�

Example.
put(∅S ,a,1) = 〈a,1〉 :: ∅S

put(〈a,1〉 :: ∅S ,b,2) = 〈a,1〉 :: 〈b,2〉 :: ∅S

put(〈a,1〉 :: 〈b,2〉 :: ∅S ,b,3) = 〈a,1〉 :: 〈b,3〉 :: ∅S

The following proposition shows that function put can maintain the unique identi-

fiers property of the store after operation.

56 Chapter 3. Modelling Configuration Changes

Proposition 3.13. Assume s ∈ S has unique identifiers i.e. ∀〈idi,vi〉,〈id j,v j〉 ∈ s . i 6=
j ⇒ idi 6= id j. Then operation s′ = put(s, id,v) always returns s′ ∈ S that also has

unique identifiers i.e. ∀〈id′i ,v′i〉,〈id′j,v′j〉 ∈ s′ . i 6= j⇒ id′i 6= id′j.

Proof. See appendix A.2

Definition 3.14 (bind).
The bind function updates the value of a reference in a store. An error2 occurs if an

attempt is made to update a reference whose parent does not exist (err2), or whose

parent is not itself a store (err1). It is also illegal to replace the root store (err3).

bind : S ×R ×V → S
bind(s,∅I,v) := err3

bind(s, id :: ∅I,v) := put(s, id,v)

bind(∅S , id :: r,v) := err2

bind(〈id,vs〉 :: sp, id :: r,v) := if vs ∈ S then 〈id,bind(vs,r,v)〉 :: sp else err1

bind(〈ids,vs〉 :: sp, id :: r,v) := 〈ids,vs〉 :: bind(sp, id :: r,v)
�

Example.
bind(∅S ,a :: ∅I,1) = 〈a,1〉 :: ∅S

bind(〈a,1〉 :: ∅S ,b :: ∅I,2) = 〈a,1〉 :: 〈b,2〉 :: ∅S

bind(〈a,1〉 :: 〈b,2〉 :: ∅S ,b :: ∅I,∅S) = 〈a,1〉 :: 〈b,∅S 〉 :: ∅S

bind(〈a,1〉 :: 〈b,2〉 :: ∅S ,b :: c :: ∅I,3) = err1

bind(〈a,1〉 :: 〈b,∅S 〉 :: ∅S ,b :: c :: ∅I,3) = 〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S

Definition 3.15 (find).
The find function looks up the value of a reference in a store.

find : S ×R → V⊥
find(s,∅I) := s

find(∅S ,r) := ⊥
find(〈id,vs〉 :: s′, id :: ∅I) := vs

find(〈ids,vs〉 :: s′, id :: ∅I) := find(s′, id :: ∅I)

find(〈id,vs〉 :: s′, id :: r′) := if vs ∈ S then find(vs,r′) else ⊥
find(〈ids,vs〉 :: s′, id :: r′) := find(s′, id :: r′)

�
2The handling of errors in these definitions is rather informal – functions which potentially cause

errors are only partially defined. This is not generally desirable in a denotational semantics and could be
avoided by using, for example monads. However, the additional complication is not appropriate here.

3.2. Formal Semantic of SmartFrog Language 57

Example.
find(〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S ,∅I) = 〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S

find(〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S ,a :: ∅I) = 1

find(〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S ,b :: ∅I) = 〈c,3〉 :: ∅S

find(〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S ,c :: ∅I) = ⊥
find(〈a,1〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S ,b :: c :: ∅I) = 3

Based on definition 3.15, we can define a property of the store’s structure: every

element’s parent is a store, as follows:

Proposition 3.16. Assume s ∈ S then ∀r ∈ R . find(s,r) 6=⊥⇒ find(s,prefix(r)) ∈ S .

Proof. See appendix A.2

Definition 3.17 (operator ⊂S).
⊂S is true if the left store is a sub-store of the right one.

⊂S : S ×R → B

s1 ⊂S s2 := ∃r ∈ R where find(s2,r) = s1 and r 6=∅I �

Based on definition 3.17, we could define a property of bind (similar with proposi-

tion 3.13): the bind function maintains the uniqueness of identifiers, as follows:

Proposition 3.18. Assume s ∈ S where s has unique identifiers, and ∀si ⊂S s : si has

unique identifiers. Then operation s′ = bind(s, id :: r,v) always returns s′ that has

unique identifiers and ∀s j ⊂S s′ : s j has unique identifiers as well.

Proof. See appendix A.2

Definition 3.19 (resolve).
The resolve function looks up a reference in a store, by starting with a given names-

pace3 (reference of the sub-store) and searching up the hierarchy of parent stores un-

til a value is found (or not). It returns a tuple 〈ns,v〉, where ns is the namespace in

which the target element is found and v is the value. If the target is not found then

〈ns,v〉= 〈∅I,⊥〉.
resolve : S ×R ×R → R ×V
resolve(s,∅I,r) := 〈∅I, find(s,r)〉
resolve(s,ns,r) := if v =⊥ then resolve(s,prefix(ns),r) else 〈ns,v〉

where v = find(s,ns⊕ r) �

3A namespace is a reference that refers to the depth of a tree of stores where the operation should be
performed.

58 Chapter 3. Modelling Configuration Changes

Example.
s = 〈a,〈b,∅S 〉 :: ∅S 〉 :: ∅S

resolve(s,∅I,a :: ∅I) = 〈∅I,a :: b :: ∅I,a :: ∅I〉
resolve(s,a :: ∅I,a :: ∅I) = 〈∅I,a :: b :: ∅I,a :: ∅I〉

resolve(s,a :: b :: ∅I,c :: ∅I) = 〈∅I,⊥〉

Definition 3.20 (resolvelink).
The resolvelink function looks a link reference in given store within given namespace.

If the resolution value is another link reference, then it must be resolved first until it

finds a non link reference value. Since there might be a cyclical (err4), then every

visited link reference is kept in an accumulator. Before resolution, the function will

check whether the link reference is already in the accumulator and then produces err4

if such situation exists.

resolvelink : S ×R ×R ×L → V⊥
resolvelink(s,ns,r,〈link,rl〉) := getlink(s,ns,r,rl,{})

getlink : S ×R ×R ×R ×P (R)→ V⊥
getlink(s,ns,r,rl,acc) :=

if rl ∈ acc then err4

else if vp = 〈link,rm〉 then getlink(s,prefix(nsq),r,rm,acc∪{rl})
else if nsq ⊆R r then err5

else 〈nsq,vp〉

where: 〈nsp,vp〉= resolve(s,ns,rl), and nsq = nsp⊕ rl �

The following property ensures that function resolvelink will always detect any

cyclic link reference.

Proposition 3.21. If function resolvelink is used to resolve a cyclic link reference, then

it will produce an error.

Proof. See appendix A.2

Proposition 3.21 shows that resolvelink can detect the (explicit) cyclic link refer-

ence. Another type of cyclical that may exist is what we call as implicit cyclic link

reference. Consider the specification in figure 3.4. Attribute comp2 has a link refer-

ence that refers to its parent. This can cause a non-terminate valuation because the link

reference will be copied during prototype expansion, and then whenever this new link

3.2. Formal Semantic of SmartFrog Language 59

1 // the production compiler never terminates
2 sfConfig extends {
3 comp1 extends {
4 comp2 comp1;
5 }
6 }

Figure 3.4: An example specification with implicit cyclic link reference.

reference is resolved, then another link reference is copied, and it continues infinitely.

Note that the current SF compiler (version 3.0.18) will not terminate when processing

this specification. This problem will be addressed later in definition 3.27.

Definition 3.22 (copy).
The copy function copies every attribute from the second store to the first store at the

given prefix (pfx).

copy : S ×S ×R → S
copy(s1,∅S ,pfx) := s1

copy(s1,〈id,v〉 :: s2,pfx) := copy(bind(s1,pfx⊕ id,v) ,s2,pfx)
�

Example.
copy(〈a,1〉 :: ∅S ,〈b,2〉 :: ∅S ,a :: ∅I) = err1

copy(〈a,∅S 〉 :: ∅S ,〈b,2〉 :: ∅S ,a :: ∅I) = 〈a,〈b,2〉 :: ∅S 〉 :: ∅S

copy(〈a,〈b,2〉 :: ∅S 〉 :: ∅S ,〈c,3〉 :: ∅S ,a :: ∅I) = 〈a,〈b,2〉 :: 〈c,3〉 :: ∅S 〉 :: ∅S

copy(〈a,〈b,2〉 :: 〈c,3〉 :: ∅S 〉 :: ∅S ,〈c,4〉 :: ∅S ,a :: ∅I) =

〈a,〈b,2〉 :: 〈c,4〉 :: ∅S 〉 :: ∅S

Definition 3.23 (inherit).
The inherit copies values from a given prototype (referred by proto) to the target store

(referred by r). The prototype may be located in a higher-level namespace, hence

the use of resolve to locate the corresponding store. If the resolution value is a link

reference, then it must be resolved first using function resolvelink.

inherit : S ×R ×R ×R → S
inherit(s,ns, proto,r) := if vp ∈ S then copy(s,vp,r)

else if vp ∈ L and vp = 〈link,rq〉 then

| if vq ∈ S then copy(s,vq,r) else err7

else err6

where 〈nsp,vp〉= resolve(s,ns, proto), and 〈nsq,vq〉= resolvelink(s,ns,r,〈link,rq〉) �

60 Chapter 3. Modelling Configuration Changes

Note that err6 occurs if the value of the prototype is not a store.

Example.
inherit(〈a,1〉 :: 〈b,∅S 〉 :: ∅S ,∅I,a :: ∅I,b :: ∅I) = err6

inherit(〈a,〈c,3〉 :: ∅S 〉 :: 〈b,2〉 :: ∅S ,∅I,a :: ∅I,b :: ∅I) = err7

inherit(〈a,〈c,3〉 :: ∅S 〉 :: 〈b,∅S 〉 :: ∅S ,∅I,a :: ∅I,b :: ∅I) =

〈a,〈c,3〉 :: ∅S 〉 :: 〈b,〈c,3〉 :: ∅S 〉 :: ∅S

Definition 3.24 (replacelink).
The replacelink function resolves the link reference value and then replaces it with the

resolution (non-link reference) value. It invokes the accept function to replace all link

reference values in all sub-stores.

replacelink : S ×R × (I×V)×R → S
replacelink(s,ns,〈id,v〉,nss) := if v ∈ L then

| if vp =⊥ then err8

| else if vp ∈ S then accept(sp,rp,vp,nsp)

| else sp

else if v ∈ S then accept(s,rp,v,rp)

else s

where rp = ns⊕ id, 〈nsp,vp〉= resolvelink(s,nss,rp,v), and sp = bind(s,rp,vp) �

Note that err8 occurs whenever the link reference value is invalid i.e. the resolution

value is undefined (⊥).

Definition 3.25 (accept).
The accept function performs the second pass by visiting every element of a store

and then passing the element to the replacelink function in order to resolve all link

references.

accept : S ×R ×S ×R → S
accept(s,ns,∅S ,nss) := s

accept(s,ns,c :: sp,nss) := accept(sq,ns,sp,nss)

where sq = replacelink(s,ns,c,nss) �

3.2.3 Valuation Functions

The valuation functions in this section show how each element of the abstract syntax

of an SF specification is evaluated. Evaluation of a complete SF specification yields a

store s ∈ S .

3.2. Formal Semantic of SmartFrog Language 61

Definition 3.26 (Terminals).
The terminal symbols are evaluated in the obvious way, as described in section 2.3.2,

using functions with the following signatures:
Bool : Boolean→ B Num : Number→ N

Str : String→ S I : Identifier→ I
Null : NullValue→N �

For example:

NumJ42K := 42 BoolJfalseK := False

Definition 3.27 (References).
Both types of reference are evaluated to a list of identifiers:

LR : LinkReference→ R → L
DR : DataReference→ R

R : Reference→ R

LRJRK := λ(r) . if rp ⊆R r then err4 else 〈link,rp〉
DRJRK := RJRK

RJ I1, ..., In K := IJ I1 K :: ... :: IJ In K :: ∅I

where rp = RJRK �

Notice that the LR function will produce err4 whenever the link reference (rp) is the

prefix of the variable’s reference (r) – this detects the implicit cyclic link reference.

Definition 3.28 (Vectors).
Vectors are evaluated by evaluating each element:

Vec : Vector→ (V)∗

VecJBV1, ...,BVn K := BVJBV1 K :: ... :: BVJBVn K :: ∅V

VecJεK := ∅V
�

Definition 3.29 (Basic values).
A basic value (BV) is one of the basic element types:

BV : BasicValue→ V

BVJBoolK := BoolJBoolK BVJNumK := NumJNumK

BVJStrK := StrJStrK BVJDRK := DRJDRK

BVJVecK := VecJVecK BVJNullK := NullJNullK
�

62 Chapter 3. Modelling Configuration Changes

Definition 3.30 (Prototype).
A prototype is a sequence of blocks or references. Blocks are evaluated directly, while

references are first resolved (in the current context) and then evaluated. Composition

proceeds right-to-left (since defined values override any corresponding values in an

extended prototype).

P : Prototype→ R ×R ×S → S

PJB PK := λ(ns,r,s) . PJPK(ns,r,BJBK(r,s))

PJR PK := λ(ns,r,s) . PJPK(ns,r, inherit(s,ns,RJRK,r))

PJεK := λ(ns,r,s) . s
�

Definition 3.31 (Value).
A value is either a basic value, a prototype, or a link reference. Basic values and link

references are entered directly in the store. Prototypes are first evaluated.

V : Value→ R ×R ×S → S

VJBVK := λ(ns,r,s) . bind(s,r,BVJBVK)

VJLRK := λ(ns,r,s) . bind(s,r,LRJLRK(r))

VJPK := λ(ns,r,s) . PJPK(ns,r,bind(s,r,∅S))
�

Definition 3.32 (Assignment).
To assign a value to a reference, the store entry for the reference is updated to contain

the value.

A : Assignment→ R ×S → S

AJR VK := λ(ns,s) . VJVK(ns, ns⊕ r, s)

�

Definition 3.33 (Block).
A block is a sequence of assignments. These are recursively evaluated left-to-right with

the store resulting from one assignment being used as input to the next assignment.

B : Block→ R ×S → S

BJA BK := λ(ns,s) . BJBK(ns,AJAK(ns,s))

BJεK := λ(ns,s) . s
�

Definition 3.34 (SF Specification).
In the first pass, a complete SF Specification is obtained by evaluating a block, in

3.2. Formal Semantic of SmartFrog Language 63

the context of an empty store ∅S and a reference ∅I to the root namespace, without

resolving any link reference. In the second pass, all link references were resolved and

the evaluation of the main sfConfig component is returned (other components are

ignored - see figure 3.1).

SF : SFSpecification→ S

Let r = sfConfig :: ∅I, s1 = BJBK(∅I,∅S), and v1 = find(s1,r)

SFJBK := if v2 ∈ S then v2 else err10

where s2 = if v1 ∈ S then accept(s1,r,v1,r) else err10

and v2 = find(s2,r) �

Note that s1 holds the result store of the first pass, while s2 holds the result store of

the second pass. It is an error (err10) if the main sfConfig element is not a store (for

example, if it is a basic value).

There are several facts about this SF semantics. First, notice that that there is no

type-checking in binding the value to the variable (see definition 3.31). Every variable

can be assigned with any value because SF is a dynamic-typed language.

Second, every prototype reference is resolved using function resolve (it is indirectly

through inherit and copy – see definition 3.23 and 3.22). Whenever the prototype

reference is not exist at the current-level store, then it will be searched at the upper-

level one, and continue until it reaches the top-level.

Third, the second pass evaluation resolves every link reference using function re-

solvelink (through function accept and replacelink), which detects and produces an

error (err4) whenever a cyclic link reference exists.

The last key fact is that the existence of the dereference value of every data refer-

ence is not checked, which is similar with the behaviour of the current SF production

compiler.

3.2.4 Correctness

We define the correctness properties that should be held by the semantics. The first

one is that the valuation functions should always terminate given a finite input of SF

specification. The second one is that the store and its children stores, as the product

of the valuation process, should have unique identifiers. And the third one is that

for every reference whose dereference value is not equal undefined, then its prefix

has a dereference value of a store. These three properties are formally defined in the

following theorems.

64 Chapter 3. Modelling Configuration Changes

Theorem 3.35. Assume specification SF ∈ SFSpecification and SF is finite, then the

valuation of SFJSFK is always terminate.

The proof of the above theorem requires us to show that every valuation function is

always terminate, given a finite SF specification. Currently, we are unable to provide

a complete proof. However, we provide a sketch of proof which gives some essential

parts of the proof. This could be guidance to develop a complete proof.

Sketch of Proof. Since the specification is finite and every data reference is not resolved

by the valuation functions, then there are two possible cases that can cause a non-

terminate valuation i.e. a cyclic link reference and a cyclic prototype.

Because function resolvelink is used to resolve every link reference and proposition

3.21 holds, then every cyclic link reference produces an error which terminates the

valuation. Another case is the implicit cyclic link reference i.e. whenever an attribute

is assigned with a link reference that refers to its parent component. Assume rv is the

variable’s reference that will be assigned by a link reference, and rc is the reference of

the variable’s parent component, then rc ⊆R rv (see example4). Based on the condition

branch in LinkReference, an error will be produced which terminates the valuation.

Because every prototype is directly resolved and expanded, then a cyclical may

occur only whenever the prototype reference is referring to a link reference value.

As specified in Prototype, every prototype expansion is done using function inherit.

Based on definition 3.23, inherit uses resolvelink to resolve any link reference. Since

proposition 3.21 holds then any cyclic reference will produce an error which terminates

the valuation.

Since the valuation always terminates whenever there is a cyclic link reference or

a cyclic prototype, then the statement holds.

Theorem 3.36. Assume specification SF∈ SFSpecification, if SFJSFK= s, s∈ S then

s has unique identifiers and ∀si ⊂S s : si has unique identifiers.

Sketch of Proof. The proof should show that the statement holds for every valuation

function in definition §3.2.3. Fortunately, we can focus on the valuation functions that

are binding a value to a store i.e. Value and Prototype, while others can be ignored

since there is no binding process in their definitions. Thus, the proof should only show

that the statement holds for valuation function Prototype and Value.
4Assume we have store s = 〈a,〈c,3〉 :: ∅S 〉 :: 〈b,∅S 〉 :: ∅S , then rc = a :: ∅I is the reference of

component a, rv = a :: c :: ∅I is the reference of attribute c of component a, and rc ⊆R rv.

3.2. Formal Semantic of SmartFrog Language 65

As defined in definition 3.2.3, the first equation of Prototype has a binding process

where store s passed by function Value, and then it is passed to function inherit –

inherit uses function copy, and copy uses bind to perform the binding (see definition

3.23 and 3.22). Since the proof is basing that the statement holds by every valuation

function, then s is a store that has unique identifiers. Because s is passed to bind and

proposition 3.18 holds, then it is valid to say that the first equation always returns a

store with unique identifiers. The last two equations of Prototype only return a store

from other valuation function. Since the proof is basing that the statement holds for

every valuation function, then it is valid to say that the statement holds for the last two

equations. Thus, the statement holds for Prototype.

As defined in definition 3.2.3, every equation of Value uses function bind to bind

a value to store s which is passed by Assignment. Since the proof is basing that the

statement holds by every valuation function, then s is a store that has unique identifiers.

Because proposition 3.18 holds, then it is valid to say that the Value always returns a

store with unique identifiers.

Since the statement holds for valuation function Prototype and Value, then the state-

ment holds.

Theorem 3.37. Assume specification SF ∈ SFSpecification, if SFJSFK, s ∈ S then

∀r ∈ R . find(s,r) 6=⊥⇒ find(s,prefix(r)) ∈ S .

Proof. Since proposition 3.16 holds then the statement holds.

3.2.5 Discussion

3.2.5.1 Store

The choice of a list structure to represent the store perhaps was not the best option. One

of the implications of this choice is that the proof of theorem 3.36 is required to show

that the uniqueness property of identifiers in the store is maintained by the semantic

functions. Representing the store in terms of sets, or more abstractly as a function

S : I→ V⊥, would have simplified the semantics.

However, the formalisation of the semantics of SmartFrog language was largely

motivated by the need for a new implementation of the compiler whose common fea-

tures are compatible with the current production compiler, while supporting additional

66 Chapter 3. Modelling Configuration Changes

1 sfConfig extends {
2 a b;
3 b 1;
4 c a;
5 }

(a) Forward link reference.

1 sfConfig extends {
2 a:b extends {
3 c 2;
4 }
5 a extends {
6 b 1;
7 }
8 }

(b) Forward placement.

Figure 3.5: Examples of forward references.

features related to the planning of configuration changes5. Therefore, we chose a rather

concrete representation that enables us to translate the semantics fairly directly to a

functional programming language (Scala and OCaml). This will give us confidence

that the compiler is correct.

On the other hand, the experiment results show that the current production com-

piler (version 3.0.18) is actually preserving the position of every element in the store

whenever its value is replaced6– this is also confirmed by the language author. This

makes our choice of a list structure to represent a store is correct, in particular for simu-

lating the actual behaviour of the production compiler. One of the advantages of using

a list is that the order of the elements are deterministic. This can then be exploited for

some purposes, for example: we can simply use diff to directly compare the output of

our compilers and the production compiler for validation.

3.2.5.2 Forward References

The production compiler supports two types of “forward references”: any variable can

be used before it is defined either on the right hand side of an assignment (a forward

link reference is shown in figure 3.5a) or on the left hand side (a forward placement is

shown in figure 3.5b). On the other hand, the semantics only supports one type which

is the forward link reference while the forward placement is illegal.

Supporting forward link references increases the complexity of the semantics since

an additional pass (see definition 3.34) must be performed in order to find and resolve

every existing link reference. It is interesting that the development of this feature in

the semantics identified an issue with the production compiler which fails to termi-

5These features are available in SFP language that is described in the last half of this chapter.
6This means that the order of the variables, at the time they are declared, must be the same to the

order of the variables in the compilation output, regardless of any modification to their values.

3.2. Formal Semantic of SmartFrog Language 67

1 sfConfig extends {
2 a extends {
3 b extends { c 1; }
4 }
5 a:b:c 3;
6 a 1;
7 }

Figure 3.6: Ambiguous forward placement.

nate on the specifications of the form shown in figure 3.4. For this example, link

reference comp1 (line 4) will be copied every time the compiler replaces it with the

resolution value which is its parent. After resolution, the same link reference must be

resolved over and over again by the compiler infinitely. The semantics prevents this

non-termination by prohibiting a link reference to referring to its parent as specified

in valuation function LR (see §3.2). Since our compilers implemented the semantics,

then they can detect such situation and produce an error when the same specifications

were given as the input. This proves that the semantics can address this issue. Note

that we have discussed this issue with the SmartFrog developer from HP Labs who

implemented the production compiler, and it will be addressed in the next version.

There is no loss of functionality in prohibiting the forward placement since the

source code can always be re-ordered to avoid it. In addition, the text of required sub-

specifications could be included (using #include) before it is being used by the as-

signment. However, since the parts of specification could be created independently by

different people, then some extra works may be required to re-ordere the assignments.

This is obviously not an easy task in particular when the requirements are defined in

many files with multilevel inclusion. Thus, the forward placement is supported by the

production compiler.

Supporting forward placement is more difficult than forward link reference. The

current production compiler uses three passes to perform this. Clearly, this will make

the semantics more complex and harder to be implemented than the current version.

This also requires invalidating certain expressions such as shown in figure 3.6 which

are valid in the current semantics. In our discussion with Patrick Goldsack, the SF cre-

ator, there is a consideration on deprecating the forward placement in the next version.

Besides complexity, this is also another reason for us to not extend the semantics to

support forward placement.

The production compiler also supports another type of forward reference called as

68 Chapter 3. Modelling Configuration Changes

1 sfConfig extends {
2 a extends {
3 b 1;
4 }
5 c extends a
6 }

(a) Standard prototype.

1 sfConfig extends {
2 c extends a
3 a extends {
4 b 1;
5 }
6 }

(b) Forward prototype.

Figure 3.7: Examples of standard and forward prototypes.

“forward prototype reference”: any component can be used as the prototype of another

component before it is defined. Figure 3.7 shows the difference between standard

and forward prototype. Supporting the forward prototype requires another pass by the

production compiler which could make the semantics more complex. Note that mutual

prototype reference is illegal.

Technically, the source codes with forward prototype references can be re-ordered

to avoid any error in using our compilers. During experiments, we only found one

specification file7 in SmartFrog software distribution that contains the forward proto-

type reference. Since it is illegal in our compilers, we then addressed this problem sim-

ply by re-ordering the inclusion file statements so that the required sub-specifications

are included before it is being used by others. This re-orderings would not affect the

compilation output of the production compiler because it supports the specification

with and without the forward prototype reference.

However, the re-ordering could be not a trivial task in particular when the specifi-

cations are defined in multi-files with multilevel inclusion. Thus, we add this feature

as part of our future works.

3.2.6 SF for Planning

The SF language was originally designed to describe a static configuration state of a

system. Although it has the notion of a runtime, but it provides limited features: every

component only has fixed states (undeployed, deployed, and running) and fixed state-

transitions (deploy, undeploy, start, terminate). In addition, the ordering relationship

between the states of components must be defined implicitly in the orders of declara-

tion statements. Thus, it is difficult to use the SF specification for planning of state

changes of the components since there is no explicit description about the conditions

7The file is: org/smartfrog/sfcore/workflow/combinators/components.sf.

3.3. SFP by Example 69

of before and after the changes. These descriptions are required for sound reasoning

why the state of a component should change and what are the conditions that must be

satisfied before the change.

On the other hand, the dynamic-typing of SF allows any variable to be assigned

with any value. Any planning process will take into account all possible values that

can be assigned to every variable. This dynamic-typing implies that the state search

space of planning will be very large – if there are in total m variables and n values, then

the search space will be mn.

The following sections describe an extension of SF in order to address the above

issues. First, the notation of action is introduced so that we can explicitly describe the

preconditions and effects of every change. This also allows the components to having

arbitrary states and transitions. Second, the notation of global constraints is introduced

to naturally describe conditions that should be maintained at every state of the system.

Third, the static type system is introduced to allow us to explicitly define the domain

of every variable. In practice, this can significantly reduce the state search space of

planning.

3.3 SFP by Example

SmartFrog for Planning (SFP) language is built based on the SF core subset. They

are different in several aspects: SFP is a static typed language while SF is dynamic-

typed; SFP has notations to declaratively describe the dynamic aspect of configuration

changes i.e. the global constraints and the actions, while these notations are not avail-

able in SF.

SFP type system serves two objectives. First is providing particular safety at

compile-time. For example, whenever a variable is assigned with a reference value

then the type system ensures that the dereference value exists and its type is compat-

ible with the variable’s type. Second is ensuring that a domain is defined for every

variable. The smaller the domain, the smaller search-space that the planner will have

in the process to find a solution-plan (planning time) – type server is preferable than

type machine or even type object, for example. Thus, we can expect that the plan can

be found in a shorter time.

On the other side, in some declarative configuration tools such as SmartFrog and

LCFG, the workflow of configuration changes are hidden in the implementation of the

70 Chapter 3. Modelling Configuration Changes

Figure 3.8: The new desired state of the example system in figure 3.1. The new values

are using bold fonts.

resource component8. Thus, if we want to enforce particular workflow which is not

implemented in the resource component, then we have to: change the implementation

of the resource component, or perform the workflow manually by presenting step-by-

step of every intermediate and goal states to the tool. These solutions are clearly time

consuming, error prone, and not suitable for unattended use.

One approach to this problem has been the use of manual workflow tools such as

provided in Chef, Ansible, SaltStack, and IBM Tivoli Provisioning Manager. However,

this still requires that the workflows are computed manually. Even in a small system,

a very large number of workflows can be required to cater for every eventuality. And

choosing an appropriate workflow to suit the goal state is not always obvious.

SFP provides an alternative approach that is providing the notations of the global

constraints and the actions so that the ordering constraints can be expressed as state

constraints. Thus, we can add any necessary constraint into the specification where

the tool automatically computes the suitable workflow that matches the current state

to achieve the desired state. The following example gives a brief introduction on this

idea.

Assume that we have a system as described in §3.1 depicted in figure 3.1. We aim

to change the configuration to the goal state shown in figure 3.8 where the service in

server s1 is stopped, the service in server s2 is running, and the desktop clients pc1

8It is the software component that is responsible to implement configuration changes to achieve the
desired state.

3.3. SFP by Example 71

1 // file : model.sfp
2 schema Machine {
3 dns = "ns.foo";
4 }
5 schema Client extends Machine {
6 refer: *Service = null;
7 def redirect(s: Service) {
8 condition { }
9 effect {

10 this.refer = s;
11 }
12 }
13 }
14 schema Service {
15 running = true;
16 port = 80;
17 def start {
18 condition {
19 this.running = false;
20 }
21 effect {
22 this.running = true;
23 }
24 }
25 def stop {
26 condition {
27 this.running = true;
28 }
29 effect {
30 this.running = false;
31 }
32 }
33 }

Figure 3.9: SFP specification of the resource model of the system depicted in figure

3.1. It is kept in file model.sfp.

and pc2 are referring to the service in s2. In addition, we want to maintain particular

constraint during the changes i.e. pc1 and pc2 always refer to a running service.

To model such configuration, first we need to model each abstract resource in a

schema as specified in figure 3.9. Lines 1-3 describe a schema of machine that has an

attribute dns with default value of a string. Lines 4-14 present a schema of desktop

client that extends schema Machine. It has an additional attribute refer whose type

is a reference of service. Besides attributes, this schema has an action defined in lines

6-13. The action has a parameter s whose type is a reference of service, a condition9

9Precondition before execution.

72 Chapter 3. Modelling Configuration Changes

1 include "system1 -model.sfp";
2 main {
3 s1 isa Machine {
4 web isa Service { }
5 }
6 s2 extends s1, {
7 web.running = false;
8 }
9 pc1 isa Client {

10 refer = s1.web;
11 }
12 pc2 pc1;
13 }

Figure 3.10: SFP specification of the current state of the system depicted in figure 3.1.

1 include "system1 -model.sfp";
2 main {
3 s1 isa Machine {
4 web isa Service {
5 running = false;
6 }
7 }
8 s2 extends s1, {
9 web.running = true;

10 }
11 pc1 isa Client {
12 refer = s2.web;
13 }
14 pc2 pc1;
15 global {
16 pc1.refer.running = true;
17 pc2.refer.running = true;
18 }
19 }

Figure 3.11: SFP specification of the desired state of the system depicted figure 3.8.

(lines 7-9), and an effect10 (lines 10-12) – keyword this refers to the parent object.

Lines 15-30 define a schema of service that has two attributes, each has a type and

a default value. The schema has two actions (lines 18-23 and lines 24-29) that can

start or stop the service. Note that SFP treats schema as static, which means that the

structure of a schema cannot be modified outside its declaration.

Figure 3.10 specifies the current state of the system. In practice the tool automati-

cally generates this current state by aggregating the state of every agent. On the other

hand, the desired state is specified in figure 3.11. Although this specification looks

10Postcondition after execution.

3.4. Formal Semantic of SFP Language 73

similar to the SF specifiction in figure 3.1, but it is different in several things. First,

keyword sfConfig is replaced with main only to differentiating SFP with SF. Second,

each variable has a type which can be defined explicitly or inferred automatically from

its value. For instance, variable pc1.refer has a type of reference of service and the

compiler ensures that the dereference value does exist11. Third, every component that

implements particular schema will inherit both its attributes and actions. For example,

since service s1.web implements schema Service then it inherits attributes running

and port as well as actions start and stop. Finally, the specification has global con-

straints defined in lines 15-18. These constraints ensure that pc1 and pc2 always refer

to a running service.

3.4 Formal Semantic of SFP Language

The SFP formal semantic consists of five parts: the core abstract syntax (§3.4.1), the

core type system (§3.4.2), the core valuation functions (§3.4.3), the global constraint

valuation functions (§3.4.4), and the action valuation functions (§3.4.5).

3.4.1 Core Abstract Syntax

Definition 3.38 (SFP Core Terminal Symbols).
These are the basic symbols of the language inherited from SF that appear in the source

code:

Bool ∈ Boolean

Num ∈ Number

Str ∈ String

Null ∈ NullValue

I ∈ Identifier

�

Definition 3.39 (SFP Core Non Terminal Symbols).
These are the non-terminal elements of the syntax directly inherited from SF:

11The compiler produces an error if the dereference value is not exist or the type is not compatible.

74 Chapter 3. Modelling Configuration Changes

B ∈ Block

A ∈ Assignment

P ∈ Prototype

R ∈ Reference

DR ∈ DataReference

LR ∈ LinkReference

Vec ∈ Vector

BV ∈ BasicValue

These are the non-terminal elements of the syntax inherited from SF with modifica-

tions:

V ∈ Value

And these are the new non-terminal elements of the syntax (not available in SF):

SFP ∈ SFPSpecification

SC ∈ SFPContext

S ∈ Schema

SS ∈ SuperSchema

G ∈ GlobalConstraint

Ac ∈ Action

TV ∈ TypeVar

�

Definition 3.40 (Type Syntax).
A basic type is either a boolean, a number, a string, an object, or any identifier used as

the name of a schema. A type is either a basic type, a vector of basic type, a reference

of basic type, a null, an action, or a global constraint.

T ::= τ | [] τ | * τ | null | act | glob
τ ::= bool | num | str | obj | I

�

Definition 3.41 (Core Abstract Syntax). The non-terminals are defined by the fol-

lowing abstract syntax. Note that the syntax do not specify the details of the concrete

syntax (see appendix B.1 for the SFP concrete syntax). In addition, the syntax of the

global constraint and the action are described in separate subsections.

3.4. Formal Semantic of SFP Language 75

SFP ::= SC

SC ::= A SC | S SC | G SC | ε
B ::= A B | G B | ε
A ::= R TV V

V ::= BV | LR | SS P | Ac

P ::= R P | B P | ε
BV ::= Bool | Num | Str | Null | Vec | DR

LR ::= R

DR ::= R

Vec ::= (BV)∗

R ::= I R | I
S ::= I SS B

SS ::= I | ε
TV ::= T | ε

�

3.4.2 Type System

This section introduces a static type system for SFP language. The type system serves

two objectives. The first is providing particular safety at compile-time. For example,

a variable is assigned a reference value where the type system ensures that the deref-

erence value exists and its type is compatible with the variable’s type. The second is

providing that a domain is defined for every variable. The smaller the domain, the

smaller search-space that the planner will have in the process to find a solution-plan

(planning time). Thus, we can expect that the plan can be found in a shorter time.

The static type system is formally defined as a proof system that is the set of rules

determining the assignment of type to particular expression and applied recursively,

each of which is in the form of:

(Name)

premises

conclusion
where premises are separated by a space or written on multiple lines. Each rule requires

an environment to resolve any variable name or reference value. Every variable can be

represented by its absolute reference in the context of root store, that is: r ∈ R .

Consider the following example:

76 Chapter 3. Modelling Configuration Changes

1 main {
2 machine {
3 dns = "foo.com";
4 }
5 }

The above specification has three variables represented by references: main, main.machine,

and main.machine.dns.

Definition 3.42 (Type environment).
Γ ::= r1 : τ1, ...,rn : τn type environment,r ∈ R
dom(Γ) = {r1, ...,rn} environment domain

�

A type environment is a map of variables’ reference to their type. Note that the form

of r1 : τ1, ...,rn : τn means that type τi is assigned to variable ri.

The formal specification starts with the type system judgements that may be made

with respect to a typing environment Γ. The type system always starts with an empty

environment represented by symbol ∅.

Definition 3.43 (Typing Judgements).
Γ ` � Γ is a well-formed environment

` τ τ is a well-formed type

τ <: τ′ type τ is a sub-type of τ′

Γ ` r : τ in Γ, variable r has type τ

�

There are three judgements: an environment is well-formed; a type is a well-formed

type; and a type is a subtype of another.

Definition 3.44 (Rules of well-formed environments and types).
(Env) (Env Var) (Type Bool) (Type Num) (Type Str)

∅ ` �
Γ ` � ` τ r 6∈ dom(Γ)

Γ,r : τ ` � ` bool ` num ` str

(Type Null) (Type Object) (Type Action) (Type Global) (Type Vec)

` null ` obj ` act ` glob
` τ

` []τ

(Type Ref) (Type Schema)
` τ

` ∗τ
id ids B ∈ S ids 6= ε⇒` ids

` id
where id, ids are schema identifiers. �

3.4. Formal Semantic of SFP Language 77

A well-formed environment is either empty (Env) or a map of variable references

to types (Env Var). A well-formed type is either a boolean, a number, a string, an

object, a null, a vector, a reference, a schema, an action, or a global constraint. Every

type has corresponding vector (Type Vec) and reference types (Type Ref). A schema

declaration introduces new type of its identifier, but if it has a super schema then the

super schema must be a well-formed type (Type Schema). Notice that these rules and

the following ones are using the abstract syntax in §3.4.1.

Definition 3.45 (Rules of subtyping).
(Schema Subtype) (Object Subtype) (Reflex) (Trans)
s s′ B ∈ S s′ 6= ε

s <: s′
s ε B ∈ S
s <: obj

` τ

τ <: τ

τ <: τ′ τ′ <: τ′′

τ <: τ′′

(Vec Subtype) (Ref Subtype) (Ref Null)
τ <: τ′

[]τ <: []τ′
τ <: τ′

∗τ <: ∗τ′
` ∗τ

null<: ∗τ
�

A schema is a subtype of its super schema (Schema Subtype), or it is a subtype of

object type if it does not have a super schema (Object Subtype). A type is reflexive

(Reflex), and it is also transitive (Trans). The subtyping property of a type is also

applied to its type vector (Vec Subtype) and reference (Ref Subtype). A null is a

subtype of all type reference (Ref Null).

Definition 3.46 (Rules of type assignment).
(Subsum) (Var Res) (Vec)
Γ ` r : τ Γ ` τ <: τ′

Γ ` r : τ′
Γ ` � (r : τ) ∈ Γ

Γ ` r : τ

Γ ` vi : τ ∀i ∈ 1..n
Γ ` [v1, ...,vn] : []τ

(Bool) (Num) (Str) (Null)
Γ ` � v ∈ Bool

Γ ` v : bool
Γ ` � v ∈ Num

Γ ` v : num
Γ ` � v ∈ Str

Γ ` v : str
Γ ` � v ∈ Null

Γ ` v : null

(DR) (LR) (Act) (Glob)
v ∈ DR Γ ` v : τ

Γ ` v : ∗τ
v ∈ LR Γ ` v : τ

Γ ` v : τ

Γ ` � v ∈ Ac
Γ ` v : act

Γ ` � v ∈ G
Γ ` v : glob

(Proto1) (Proto2)
ε ε ∈ V

Γ ` ε ε : obj
ε p1...pn ∈ V p1 ∈ B

Γ ` ε p1...pn : obj

(Proto3)
ε p1...pn ∈ V p1 ∈ R Γ ` p1 : τ1 (pi ∈ R∧Γ ` pi : τi)⇒ τi <: τ1 ∀i ∈ 2..n

Γ ` ε p1...pn : τ1

78 Chapter 3. Modelling Configuration Changes

(Proto4) (Proto5)
τ p1...pn ∈ V (pi ∈ R∧Γ ` pi : τi)⇒ τi <: τ ∀i ∈ 1..n

Γ ` τ p1...pn : τ

τ ε ∈V Γ ` τ

Γ ` τ ε : τ

(Assign1) (Assign2)
r ε v ∈ A r 6∈ dom(Γ) Γ ` v : τ

Γ,r : τ ` �
r ε v ∈ A Γ ` r : τ Γ ` v : τ′ τ′ <: τ

Γ ` �

(Assign3)
r τ v ∈ A r 6∈ dom(Γ) Γ ` v : τ′ τ′ <: τ

Γ,r : τ ` �

(Assign4)
r τ′ v ∈ A Γ ` r : τ Γ ` v : τ′′ τ′′ <: τ′ <: τ

Γ ` �
�

The subsumption rule (Subsum) means that a variable with a type can be assigned

with any value of its supertypes. The next rule (Var Res) is the type resolution of a

variable. The rule (Vec) specifies that every element of a vector should have the same

type, and the element’s type becomes the vector’s type. This is followed by four rules

(Bool, Num, Str, Null) that specify the type of four basic values: a boolean, a number,

a string, and a null. Rule (LR) states that the type of a link reference is the same as the

source type. However, rule (DR) states that the type of the data reference is a reference

of the source type. Note that there is no reference of reference. Thus, if the source

type is already a reference, then the type of the data reference is the same as the source

type. Rules (Act) and (Glob) define that the actions and the global constraints have

specific types – these will be used later by the planner to extract the actions and the

global constraints from the specification.

The rule (Proto1) defines that the type of an empty prototype value, without any

schema, is a plain object. In the rule (Proto2), if there is no schema and the first

prototype is a block then the prototype value is a plain object. However, in the rule

(Proto3), if the first prototype is a reference prototype then other reference prototypes

must be a subtype of the first, and the type of the first reference prototype is the type of

the value. But, whenever a schema preceeds the prototypes (Proto4), then all reference

prototypes must be a subtype of the schema, and the schema is the type of the value.

(Proto5) defines a schema and without any prototype.

The last four rules are for assigning a value to a variable. In the rule (Assign1), if

the variable has not been defined and there is no explicit type then the type of value is

used as the variable’s type. However, in (Assign2), if the variable is defined then the

3.4. Formal Semantic of SFP Language 79

value’s type must be a subtype of the variable’s type. In (Assign3), the value’s type

must be a subtype of an explicit type which becomes the variable’s type if it has not

been defined. Finally, the rule (Assign4) states that an explicit type and the value’s

type must be subtypes of a defined variable’s type.

3.4.3 Core Valuation Functions

This section presents value-level valuation functions of SFP core syntax in definition

§3.41. Definition of TV (TypeVar) is omitted since it is only used by the type system.

Since the semantics are reusing definition 3.26 (Bool, Num, Str, I, Null), 3.27 (R, DR,

LR), 3.28 (Vec), 3.29 (BV), and 3.30 (P), then their definitions will be omitted as well.

Other symbols are evaluated using the following functions.

Definition 3.47 (Super Schema).
A super schema is first resolved and then evaluated to copy its attributes to the target

object or subschema.

SS : SuperSchema→ R ×S → S

SSJ IK := λ(r,s) . inherit(s,∅I,rs,r)

SSJεK := λ(r,s) . s

where rs = IJ IK :: ∅I �

Definition 3.48 (Schema).
A schema is a super schema and a block. The block is evaluated directly, while the

super schema is first resolved and then evaluated.

S : Schema→ S → S

SJ I SS BK := λs . BJBK(r,sv)

where r = IJ IK :: ∅I, and sv = SSJSSK(r, bind(s,r,∅S)) �

Definition 3.49 (Value).
A value is either a basic value, a schema-prototype, a link reference, or an action. Basic

values, link references, and actions are entered directly in the store. A schema is first

evaluated, and then prototypes are evaluated.

V : Value→ R ×R ×S → S

VJBVK := λ(ns,r,s) . bind(s,r,BVJBVK)

VJLRK := λ(ns,r,s) . bind(s,r,LRJLRK(r))

VJP SSK := λ(ns,r,s) . PJPK(ns,r,sv)

VJAcK := λ(ns,r,s) . bind(s,r,AcJAcK)

80 Chapter 3. Modelling Configuration Changes

where sv = SSJSSK(r,bind(s,r,∅S)) �

Notice that definitions of VJBVK and VJLRK are the same with the first and second

functions of definition §3.31.

Definition 3.50 (Assignment).
To assign a value to a reference, the store entry for the reference is updated to contain

the value.

A : Assignment→ R ×S → S

AJR TV VK := λ(ns,s) . VJVK(ns, ns⊕ r, s)

�

Notice that TV is not evaluated since it is only used by the type system.

Definition 3.51 (SFP Context).
A context is a sequence of attributes, schemata, or global constraints. Attributes,

schemata, and global constraints are first evaluated.

SC : SFPContext→ R ×S → S

SCJA SCK := λ(ns,s) . SCJSCK(ns,AJAK(ns,s))

SCJS SCK := λ(ns,s) . SCJSCK(ns,SJSK(s))

SCJG SCK := λ(ns,s) . SCJSCK(ns,GJGK(s))

SCJεK := λ(ns,s) . s
�

Definition 3.52 (Block).
A block is either a sequence of assignments or global constraints. Assignments are

recursively evaluated left-to-right with the store resulting from one assignment being

used as input to the next assignment. While global constraints are evaluated as a con-

junction formula.

B : Block→ R ×S → S

BJA BK := λ(ns,s) . BJBK(ns,AJAK(ns,s))

BJG BK := λ(ns,s) . BJBK(ns,GJGK(s))

BJεK := λ(ns,s) . s
�

Definition 3.53 (SFP Specification).
At the first pass, a complete SFP Specification is obtained by evaluating a sequence

3.4. Formal Semantic of SFP Language 81

of SFP contexts, in the context of an empty store ∅S and a reference ∅I to the root

namespace, without resolving any link reference. At the second pass, all link refer-

ences were resolved and the evaluation of the main main component is returned (other

components are ignored).

SFP : SFPSpecification→ S

Let r = main :: ∅I, s1 = SCJSCK(∅I,∅S), and v1 = find(s1,r)

SFPJSCK := if v2 ∈ S then

| if vg =⊥ then v2

| else if vg ∈ C then bind(v2,rg,vg)

| else err12

else err11

where s2 = if v1 ∈ S then accept(s1,r,v1,r) else err11

v2 = find(s2,r), rg = global :: ∅I, vg = find(s1,rg) �

Note that s1 holds the result of the first pass, while s2 holds the result of the second

pass. It is an error (err11) if the main element (main) is not a store (for example, if

it is a basic value). Since the global constraints is at the top-level store (referred by

global :: ∅I), then it should be reassigned to the main element.

Definition of GlobalConstraint (G) and Action (Ac) will be given in following

subsections.

3.4.4 Global Constraint

The global constraints are logic formulas that must be true at any state of the system.

This section describes how to construct the functions that represent the logic formulas

of the constraints as defined in the specification. Since the constraints can be defined

in separate declarations, then the final global constraint is a conjunction of these dec-

larations. For example, consider the following:

1 main {
2 x = 1;
3 y {
4 z = true;
5 global {
6 x in [1, 2, 3];
7 }
8 }
9 global {

10 y = true;
11 }
12 }

82 Chapter 3. Modelling Configuration Changes

The above specification is equivalent to:

1 main {
2 x = 1;
3 y {
4 z = true;
5 }
6 global {
7 x in [1, 2, 3];
8 y = true;
9 }

10 }

Any reference in the constraint can be prevail, nested (reference to another refer-

ence), or invalid.

Definition 3.54 (Reference Classification).
Assume σ ∈ S and r ∈ R , then:

r is a prevail reference of σ

iff find(σ,r) 6=⊥, or

r is a nested reference of σ

iff find(σ,r) =⊥ ∧ ∃rs.(rs 6=∅I ∧ rs ⊂R r)⇒ find(σ,rs) 6=⊥, or

r is an invalid reference of σ

iff r is not a prevail or nested reference. �

For example, consider the following specification:

1 schema DBService {
2 running = true; // type: bool
3 }
4 schema WebService {
5 running = true; // type: bool
6 db : *DBService = null; // type: *DBService
7 }
8 schema Client {
9 refer : WebService = null;

10 }
11 main {
12 s1 isa DBService; // type: DBService
13 s2 isa WebService { // type: WebService
14 db = s1; // type: *DBService
15 }
16 pc isa Client { // type: Client
17 refer = s2; // type: *WebService
18 }
19 global {
20 pc.refer = web; // valid statement
21 pc.refer.running = true; // valid statement
22 pc.refer.db.running = true; // valid statement
23 }
24 }

3.4. Formal Semantic of SFP Language 83

In above, lines 19-23 define the global constraints: the first is a prevail and the

second and third are nested references. The prevail reference’s type can be easily

inferred from the type environment using the reference. However, this could not be

used to determine the type of the nested reference.

We can use the type information available in the schema to determine the type of

a nested reference. For example, pc.refer.running is the reference to be inferred.

First, we must determine the longest prevail prefix of pc.refer.running which is

available in the type environment. In this case, main.pc.refer is the longest prevail

with type WebService. Afterwards, we find an attribute of WebService which is equal

to the first identifier of the non prevail prefix i.e. running. The combination of the

schema’s identifier and the non prevail prefix (WebService.running) is then used

to get the type of the original reference i.e. boolean. Similar steps are also used to

determine the type of the second nested reference (line 22) which will return a boolean

type as well.

Unfortunately, we have not been able to formally define the type checking rules for

the global constraints. We leave this as part of the future works.

Definition 3.55 (Non Terminal Symbols).
These are the non-terminal elements of basic constraint syntax:

And ∈ Conjunction

Or ∈ Disjunction

Eq ∈ Equal

Ne ∈ NotEqual

Im ∈ Implication

Not ∈ Negation

ML ∈ MemberOfList

These are the non-terminal elements of the global constraints syntax:

G ∈ GlobalConstraint

CS ∈ ConstraintStatement

�

Definition 3.56 (Abstract Syntax).
The non-terminals are defined by the following abstract syntax:

84 Chapter 3. Modelling Configuration Changes

G ::= And

And ::= (CS)∗

Or ::= (CS)∗

CS ::= Eq | Ne | Not | Im | And | Or |ML

Eq ::= R BV

Ne ::= R BV

Im ::= And And

Not ::= CS

ML ::= R Vec

Note that symbols R, BV, and Vec are the same as the symbols of the core syntax (see

definition 3.39).

�

First, we define the constraint domain that represents the valuation result of the

constraint.

Definition 3.57 (Constraint Domain). C= S → B, is the constraint domain which is

a function that receives a store as parameter, and returns True if the store satisfies the

constraints, otherwise it returns False. �

Definition 3.58 (Basic Constraint).
Every basic constraint is evaluated to form a corresponding function of logic formula.

And : Conjunction→ C
AndJCS1, ...,CSn K := λs . CSJCS1 K(s) ∧ ... ∧CSJCSn K(s)

AndJεK := λs . True

Or : Disjunction→ C
OrJCS1, ...,CSn K := λs . CSJCS1 K(s) ∨ ... ∧CSJCSn K(s)

OrJεK := λs . True

Eq : Equal→ C
EqJR BVK := λs . find(s,RJRK) = BVJBVK

Ne : NotEqual→ C
NeJR BVK := λs . ¬(find(s,RJRK) = BVJBVK)

Im : Implication→ C
ImJAnd1 And2 K := λs . AndJAnd1 K(s) ⇒ AndJAnd2 K(s)

Not : Negation→ C
NotJCSK := λs . ¬CSJCSK(s)

3.4. Formal Semantic of SFP Language 85

ML : MemberOfList→ C
MLJR VecK := λs . find(s,RJRK) ∈ VecJVecK

�

Definition 3.59 (Constraint Statement).
A constraint statement is either of the basic constraint.

CS : ConstraintStatement→ C
CSJEqK := EqJEqK CSJNeK := NeJNeK

CSJNotK := NotJNotK CSJ ILK := ILJ ILK

CSJ ImK := ImJ ImK CSJFEK := FEJFEK

CSJAndK := AndJAndK CSJOrK := OrJOrK
�

Definition 3.60 (Global Constraint).
The final global constraint is a conjunction of all global constraint declarations.

G : GlobalConstraint→ S → S
GJAndK := λs . if gs =⊥ then bind(s,r,gc)

else if gs ∈ C then bind(s,r, f)

else err12

where r = global :: ∅I, gs = find(s,r), gc = AndJAndK, and f = λs′ . gs(s′)∧gc(s′)

�

Notice that since the global constraint must be satisfied at every state, then the

expression of MemberOfList can be used to reduce the size of the domain of a particular

variable by defining a list of value that the variable can have. Assume we have the

following:

1 main {
2 x = 1; // type: num
3 global {
4 x in [1, 2, 3, 4, 5]; // defined by person A
5 }
6 global {
7 x in [0, 1, 2]; // defined by person B
8 }
9 }

Line 2 shows that x’s domain is R. However, line 4 specifies that x’s value is al-

ways either 1, 2, 3, 4, or 5. Thus, its domain can be redefined as R∩{1,2,3,4,5} =
{1,2,3,4,5}. Line 5 reduces the domain further more where the final domain of x is

{1,2,3,4,5}∩{0,1,2} = {1,2}. This can help the administrators to precisely define

the domain of the variable, and it can reduce the planning search space.

86 Chapter 3. Modelling Configuration Changes

3.4.5 Action

The introduction of the action notations in SFP was largely motivated by the need

for allowing the administrator to declaratively describe the state changes of configura-

tions, which then can be exploited by an automated planner to automatically generate

a workflow between any two viable states. We adopt the PDDL-style for describing an

action where each action has a name, parameters, preconditions, effects, and a cost.

Definition 3.61 (Non Terminal Symbols).
These are the non-terminal symbols of action syntax:

Ac ∈ Action

Pa ∈ Parameters

Co ∈ Cost

Cd ∈ Condition

Ef ∈ Effect

Definition 3.62 (Abstract Syntax).
The non-terminals are defined by the following abstract syntax:

Ac ::= Pa Co Cd Ef

Pa ::= (I T)∗

Co ::= Num | ε
Cd ::= And | ε
Ef ::= (R BV)+

Note that symbols I, T, Num, R and BV are the same as the symbols of SFP core (see

§3.4.1). While symbols And is the same as the symbol of SFP global constraints (see

definition 3.55). �

Definition 3.63 (Action Domain).
Action domain is a 4-tuple A = (I)∗ ×R×C× (E)∗ whose elements are a list of

parameter, an action cost, the preconditions, and the effects respectively, where:

E= {ei|ei : S → S} �

Definition 3.64 (Effect).
An effect is a list of variable assignment (order does not matter) when the action is

executed. The left-hand side is the reference of the variable, while the right-hand side

is the value to be assigned. Every reference must be prevail.

Ef : Effect→ E

3.4. Formal Semantic of SFP Language 87

EfJR1 BV1, ...,Rn BVn K := λs . effi(...(eff1(s)))

where effi = λs . bind(s,RJRKi,BVJBVKi) �

Definition 3.65 (Precondition).
The preconditions is a constraint that must be satisfied before executing the action.

Cd : Condition→ C
CdJAndK := AndJAndK

CdJεK := λs . True
�

Definition 3.66 (Cost).
A cost represents the action’s preference value comparing to the others. This can be

used by the planner to find a global optimal solution by searching a plan whose total

cost of actions is the minimum.

Co : Cost→ R
CoJNumK := NumJNumK

CoJεK := 1
�

Definition 3.67 (Parameter).
A parameter is a list of free variables that can be used within the action context. Each

free variable has a type which will be used to determine the substitution value for

generating the grounded-actions.

Pa : Parameter→ (I)∗
PaJ I T PaK := 〈IJ IK〉 :: PaJPaK

PaJεK := ∅
�

Definition 3.68 (Action).
The parameter, the cost, the precondition, and the effect are first evaluated.

Ac : Action→ A

AcJPa Co Cd EfK := 〈 PaJPaK, CoJCoK, CdJCdK, EfJEfK 〉 �

3.4.6 Discussion

3.4.6.1 Action

Notice that the action’s effect can only assign a variable with a basic value: a boolean,

a number, a string, a vector, a null, or a reference. It cannot assign (and create) a new

88 Chapter 3. Modelling Configuration Changes

object or delete an existing one. The main reason for this design is because every con-

figuration task will be compiled into a classical planning problem where the number

of objects must be finite.

On the other hand, every reference in the action effect must be a prevail reference.

Any nested reference will make the effect to be non-deterministic because it requires

particular conditions (e.g. a particular variable should not be null) to be satisfied before

applying the assignment.

In the classical planning, every action must not have a parameter – this is called

as a grounded-action. However, since SFP allows an action to have parameters, then a

grounding-process is required in order to transform actions with parameters to grounded-

actions (without parameters) by substituting the parameters with appropriate values.

One of motivations of the introduction of static typing in SFP was the need for

reducing the number of possible values that can substitute a parameter of action. This

is based on the fact that any value can substitute an untyped-parameter. On the other

hand, only values with particular type can substitute a typed-parameter. Thus, a static

typing helps the grounding algorithm to producing less number of grounded-actions

which implies small search space, since a planning problem is actually a combinatorial

problem of actions. However, we have not been able to formally define the type-

checking rules for the actions. We leave this as part of the future works.

3.4.6.2 Loose Specification

Currently, the SFP language only supports a “rigid” specification where every variable

only has one possible value at the desired state. Some previous works, such as [Hewson

et al., 2012], introduced a way to describe a “loose” specification where the desired

state is described as constraints. A similar idea can be easily adopted in SFP.

For example, we can introduce a notation to express any value, which can be as-

signed to a particular variable. This special value means that the variable can have any

value at the final state as long as the value is a member of the variable’s domain.

Another way is that a new type of constraint, called final, is introduced in order

to allow us to define the constraints which are only applied at the final state of the

system. We can use constraints or SAT solver in order to generate the possible final

states that satisfy the final constraints. Since there will be more than one goal state that

can be achived by the workflow, then a particular strategy must be implemented during

planning. §4.2.6 describes the details of this strategy.

3.5. Summary 89

3.5 Summary

As summary, this chapter has presented the formal semantics of the core subset of

SmartFrog (SF) language. Some useful properties, such as termination, have been pro-

vided and proved. The formal semantics have been used as a precise and independent

reference for developing alternative SF compilers12. In addition, the development of

the semantics helped us to identify an issue on the current SF production compiler

which fails to terminate on the specification of a particular form. The solution of this

issue has been provided in the formal semantics.

On the other hand, the chapter has presented the SFP language which extends SF

with notations of global constraints and actions. Unlike SF, SFP is a static-typed lan-

guage. The semantics of SFP has been formalised. However, the type checking rules

for the global constraints and the actions have not been formalised – they are part of

future works. This SFP formal semantics has been used as an independent reference

for developing the SFP compiler.

12At the time this thesis was written, there are three SF compilers which were developed only based
on the formal semantics.

Chapter 4

Planning Configuration Changes

Every classical planning problem uses a restricted planning model where the goal of

the problem only specifies the final state that should be achieved by the plan. However,

in practice, we might want to specify the extended goal of the problem which concerns

not only on the final state, but also on every visited state during execution. This ex-

tended goal is commonly found in the problems of the system configuration domain

– the configuration specification defines the desired state of the system as well as the

global constraints that must be preserved during configuration changes.

[Herry et al., 2011] has shown that an off-the-shelf classical planner can be used

to automatically generate a plan as the solution of a configuration problem. However,

this approach requires the global constraints to be directly encoded as preconditions

associated with some actions. Thus, a change to the constraint forces us to modify

the actions. In real situations this is impractical: the specification of the actions are

commonly written by a software engineer or expert who has a deep knowledge of

the software which the administrator does not have. Determining whether an action

must be modified or not may be as hard as the planning itself, since the constraints for

execution could require arbitrary states to be achieved by previous actions. In addition,

a modification may not be allowed due to a lack of permission or a license violation,

for example.

The automated planning community has identified and addressed this restriction is-

sue in the Planning Domain Definition Language version 3 (PDDL3). PDDL3 extends

the previous version (PDDL21) by allowing us to express the extended goal as the state

trajectory constraints using a set of modal operators. One of the modal operators is

always, which is used to express the global constraints.

1The gola of PDDL2 only specifies the final state.

91

92 Chapter 4. Planning Configuration Changes

This chapter presents two contributions described in two different sections. The

first section presents a domain independent technique that compiles a planning problem

with extended goals into a classical planning problem. The compilation result can then

be solved by any classical planner. The second section presents a technique to translate

a configuration task defined in SFP language into a classical planning problem. The

translation result is then given as input to an off-the-shelf classical planner in order to

generate the solution plan which can be executed to bring the system from the current

to the desired configuration state while preserving the global constraints.

4.1 Planning with Extended Goal

In system configuration, the notion of the global constraints means the constraints

that must be satisfied at all states visited by the plan. Based on the definition 2.2 of

FDR task, we can formally define a planning problem with global constraint as the

following.

Definition 4.1 (Planning Problem with Global Constraint).
A planning problem with global constraint is a 5-tuple Θ = 〈V,A,s0,sg,sβ〉 where:

• V = {v1, ...,vn} is a set of state variables, each of which is associated with a

finite domain Dv. If d ∈ Dv then v = d is an atom. A partial variable assignment

over V is a function s on some subset of V such that s(v) ∈ Dv, wherever s(v) is

defined. If s(v) is defined for all v ∈V , then s is a state;

• A is a set of actions, each of which is a 4-tuple 〈name,cost,pre,eff〉, where name

is a unique symbol, cost ∈ R0+ is a non-negative cost, while pre and eff are

partial variable assignments called preconditions and effects;

• s0 is a state called an initial state, sβ is a partial variable assignment called the

global constraints and sg is a partial variable assignment called the goal. If π

is the solution plan of Θ and 〈s0,s1, ...,sn〉 are the states visited by π, then the

semantics of sg and sβ are:

〈s0,s1, ...,sn〉 |= sg iff sn |= sg

〈s0,s1, ...,sn〉 |= sβ iff ∀i : 0≤ i≤ n .si |= sβ

�

Based on the above definition, we can solve the planning problem with global

constraint by compiling it into an FDR task (as defined in §2.2.3) as the input for

4.1. Planning with Extended Goal 93

the classical planner to find the solution plan. The main idea of the compilation is

enforcing the planner to verify whether the state after executing an action satisfies the

global constraint. Note that this compilation technique assumes that the solution plan

to the planning problem is a sequential plan.

The compilation can be summarised as follows:

1. An artificial binary state variable vβ is introduced as the flag of the global con-

straint. At the initial state vβ = False which means that the initial state is not

satisfying the global constraint. While at the goal state vβ = True which means

that the goal should satisfy the global constraint;

2. Each original action is assumed to violate the global constraint after its execution

by adding atom vβ = False into its effect. In addition, each action cannot be

executed if the previous state does not satisfy the constraint by adding atom

vβ = True into its precondition;

3. An artificial action aβ is introduced whose cost is 0, precondition is sβ∧ (vβ =

False) and effect is vβ = True. During planning, aβ will be immediately selected

by the planner after another action in order to ensure that the resulting state

satisfies the global constraint.

4.1.1 First-Order Formula

If the global constraint is a first-order formula, then it must be converted into a Dis-

junctive Normal Form (DNF) formula due to the restriction of FDR where each action’s

precondition must be a conjunction of atoms. If the DNF after conversion is in the form

of φ1 ∨ φ2 ∨ ...∨ φn where φi is a conjunction of atoms, then an artificial action ai
β

is

introduced for each φi whose precondition is φi∧ (vβ = False) and effect is vβ = True.

During planning, any artificial action can be picked by the planner since the global

constraint is true if any conjunction clause of DNF is true.

a1 a2 … am

a1 a2 am…
a� a� a� a� a�

Figure 4.1: The solution plan before (top) and after (bottom) postprocessing.

94 Chapter 4. Planning Configuration Changes

If the solution plan is found then its length is 2m+1 where m is the plan’s length for

the original problem and m+1 is the number of artificial actions. Thus, a postprocess-

ing step must be performed to remove the artificial action to get the solution plan for

the original problem. Figure 4.1 illustrates a plan before and after the postprocessing.

Intuitively, the compilation can be done in another way: adding the global con-

straint into the preconditions of each original action. It seems that the planning problem

after this alternative compilation is simpler because the artificial variable and action (vβ

and aβ) are not being required. However, this could lead to a potential larger number

of actions if the global constraint is a first-order formula. This is because the formula

must be converted to DNF, where for each DNF conjunctive clause, each original ac-

tion must be copied and the clause is added into its preconditions to ensure that the

previous state satisfies the constraint. This alternative compilation has one less vari-

able compared to the above compilation. However, if there are n original actions and

the DNF of the global constraint has p conjunctive clauses, then the problem produced

by this alternative compilation will have n∗ p actions which is higher than the previous

compilation technique that has n+ p actions. The lower number of actions, the better

performance we could expect from the planner since it has less number of actions to

be considered during planning.

On the other hand, the conversion of a first-order formula to DNF can be very

expensive and the size of the DNF formula can be exponential compared to the original.

Implication formula is one of the factors that cause the exponential explosion. For

example, in DNF, a logical formula of the following form has 2n clauses:

(φ1⇒ ψ1)∧ (φ2⇒ ψ2)∧ ...∧ (φn⇒ ψn)

Fortunately, there is another way to compile the global constraint formula if it is a

conjunction that has a set of simple implication clauses.

Definition 4.2 (Simple Implication).
φ⇒ ψ is a simple implication iff φ and ψ are conjunctions of atoms. �

Based on experience, simple implication formulas are found in many real use-cases2.

Thus, a special handling of the simple implication would give a benefit because it could

minimize the exponential explosion effect, or even eliminate it if the global constraint

is purely a conjunction of simple implication clauses.

2In system configuration domain, a dependency between component is defined as a simple implica-
tion formula.

4.1. Planning with Extended Goal 95

φ ψ φ⇒ ψ

true true true

true false false

false true true

false false false

Figure 4.2: Truth table of an implication.

The basic idea of compiling the simple implication is based on the truth table shown

in figure 4.2. It shows that φ⇒ ψ is false iff φ is true and ψ is false. Thus, some

necessary modifications must be done on each action’s preconditions in order to ensure

that this case will not occur at the state before and after executing the action.

Definition 4.3 defines the compilation rules that must be applied to each original

action in order to ensure that the simple implication constraint is not violated during

execution. For each rule, above the line is the premise that must be satisfied before

modification and below the line is a modification/step that should be done to the ac-

tion. Note that the rules only modify the action preconditions, while the effects are

unchanged.

Definition 4.3 (Simple Implication Compilation Rules).
Assume ai = 〈namei,costi,prei,effi〉 is the original action and a′i = 〈namei,costi,pre′i,

eff′i〉 is the action after modification. Then the following rules are applied to each

original action:

a)
(prei |= φ∧¬ψ)∨ (effi |= φ∧¬ψ)

delete ai
b)

prei 6|= ¬φ∧prei |= ¬ψ

pre′i = pre∧¬φ

c)
prei |= φ∧prei 6|= ψ

pre′i = prei∧ψ
d)

effi |= φ∧ effi 6|= ψ

pre′i = prei∧ψ
e)

effi 6|= ¬φ∧ effi |= ¬ψ

pre′i = prei∧¬φ

�

Rule (a) deletes the action because its preconditions or effects violates the simple

implication. Rules (b) and (c) add necessary condition to the preconditions of the orig-

inal action so that the state before execution does not violate the simple implication.

While rules (d) and (e) add additional effects to ensure that the state after execution

does not violate the simple implication.

96 Chapter 4. Planning Configuration Changes

Algorithm 4.1 shows the complete steps to compile a planning problem with global

constraint to a classical planning problem. If there are n variables and m actions in the

original problem, the global constraint has p simple implications where p > 0, and the

DNF formula of the global constraint has q conjunction clauses, then the algorithm’s

complexity is O(m∗ p) if m∗ p≥ q or O(q) if m∗ p < q. The number of variables and

actions after compilation are n+13and m+q respectively.

Unfortunately, if the global constraint is a complex formula e.g a conjunction of

non-simple implication clauses, then the compilation could be expensive since the for-

3After compilation, the problem will have one additional state variable vβ as the flag of the global
constraint.

Algorithm 4.1 Compile a planning problem with global constraint to a classical plan-

ning problem.
Require: V is the set of variables, A is the set of actions, s0 is the initial state, sg is the

goal, Sβ is the first-order formula of the global constraint.

1: function COMPILE-GLOBAL(V,A,s0,sg,Sβ)

2: if Sβ is a conjunction formula then
3: for each simple implication clause (φ⇒ ψ) ∈ Sβ do
4: for each action ai ∈ A do
5: apply simple implication rules of (φ⇒ ψ) to ai . see def. 4.3

6: remove (φ⇒ ψ) from Sβ

7: SβDNF ← convert Sβ to DNF

8: V ←V ∪ vβ . Dvβ
= {True,False}

9: for each action a ∈ A, a = 〈name,pre,eff〉 do
10: pre← pre∧ (vβ = True)

11: eff← eff∧ (vβ = False)

12: for each conjunction clause ϑ ∈ SβDNF do
13: name′← unique symbol

14: pre′← ϑ∧ (vβ = False)

15: eff′← (vβ = True)

16: A← A∪{〈name′,0,pre′,eff′〉} . add artificial action with cost 0

17: s0← s0∧ (vβ = False)

18: sg← sg∧ (vβ = True)

19: return 〈V,A,s0,sg〉

4.1. Planning with Extended Goal 97

mula must be converted to DNF. Perhaps a solution to this problem is to replace FDR

with another representation that allows the preconditions of the action to be represented

as a Conjunctive Normal Form (CNF) or even a first-order formula. However, chang-

ing the representation may affect the heuristic search technique used by the planner.

For example, both causal-graph (hCG) [Helmert, 2004] and context-enhanced-additive

(hCEA) [Helmert and Geffner, 2008] heuristics heavily rely on the causal-graph struc-

ture generated from FDR – the causal graph represents relations between state variables

based on the preconditions and effects of every FDR action. Replacing FDR with a dif-

ferent representation will make the heuristics to be unusable because the causal graph

cannot be generated due to the representation changes – the heuristic might be adapted

but it is not an easy task. On the other hand, other heuristics such as FastFoward (hFF)

[Hoffmann and Nebel, 2001] or Landmark (hLM) [Richter and Westphal, 2010] do not

rely on the causal-graph – the heuristics are calculated based on the relaxed4version of

the planning problem. Thus, it is possible to use FF and LAMA in the representation

that allows the action’s preconditions in CNF or first-order formula. We leave further

investigation of this idea for future work.

4.1.2 Uncompilability Constraint

The above compilation scheme preserves the plan existence, which means that if there

exists a sequential plan satisfying the goal and the global constraint of the original

planning problem, then there also exists a valid sequential plan for the compiled prob-

lem. However, it is possible to define a planning problem with a global constraint

whose solution plan is a parallel plan that involves parallel actions, but no sequential

plan. For example, the global constraint specifies that a table must be lifted at the same

time by two robots. This example can be represented as the following.

4A relaxed problem of the FDR task allows every variable to hold more than one value at particular
state. It means that whenever an action assigns a new value to any variable, then the old value will still
be kept. Thus, the variable will hold the old and the new values at the next state.

98 Chapter 4. Planning Configuration Changes

initial state: goal:
- robot1-hand = empty - robot1-hand = desk
- robot2-hand = empty - robot2-hand = desk

action: robot1-lift-desk action: robot2-lift-desk
precond: robot1-hand = empty precond: robot2-hand = empty
effect: robot1-hand = desk effect: robot2-hand = desk

global constraint:
((robot1-hand = desk) ∧ (robot2-hand = desk)) ∨
((robot2-hand = empty) ∧ (robot1-hand = empty))

Clearly, only a parallel plan can solve this problem while any sequential plan would

not since the problem requires action robot1-lift-desk and robot2-lift-desk to be ex-

ecuted in parallel. Our compilation technique will not be able to solve this type of

problem since its output is a classical planning problem where any classical planner

will only generate a sequential plan.

4.1.3 Partial-Order Plan

After compilation, the classical planner will generate a total-order plan which must be

executed sequentially. In practice, the sequential execution could become the bottle-

neck of the system since only one action can be executed at particular time. Thus, it is

necessary to have a partial-order plan which enables parallel execution of the actions.

[Veloso et al., 1990] and [Ambite and Knoblock, 2001] have introduced algorithms

to generate a partial-order plan from a total-order plan based on STRIPS formalism

[Fikes and Nilsson, 1971]. Algorithm 4.2 is an extended version of these algorithms

adapted for FDR5plan with additional step to maintain the global constraint.

Function GENERATE-PARTIAL-ORDER is called after the classical planner gener-

ates the plan for the compiled version of the planning problem. It returns a partial-order

plan for the original problem. In lines 2-3 of the algorithm, the preconditions of every

artificial action ai
β

is added to the preconditions of a non-artificial action ai that imme-

diately follows it. This additional condition will ensure that the state before executing

action ai has satisfied the global constraint. Thus, artificial actions can be ignored at

the next steps (lines 4-13). Lines 5-9 generates the causal links i.e. finding the actions

that support the preconditions of every action. If ak has an effect that supports the

preconditions of ai where k < i and there is no such action between them that threats

5See [Helmert, 2009] for more details about the differences between STRIPS and FDR.

4.1. Planning with Extended Goal 99

Algorithm 4.2 Generate partial-order plan.

Require: A valid total-order plan π = 〈a1
β
,a1,a2

β
,a2, ...,an

β
,an,an+1

β
〉 generated after

compilation, where ai
β

is the artificial action.

1: function GENERATE-PARTIAL-ORDER(π)

2: for each action ai ∈ π do
3: Preconditions(ai)← Preconditions(ai)∧Preconditions(ai

β
)

4: for i← n down-to 1 do
5: for each (v = d) ∈ Preconditions(ai) do
6: choose k < i such that:

7: 1. (v = d) ∈ Effects(ak), and

8: 2. 6 ∃l : k < l < i .(v = d′) ∈ Effects(al) ∧ d 6= d′

9: add order ak ≺ ai

10: for each (v = d) ∈ Effects(ai) do
11: for j← (i−1) down-to 1 do
12: if (v = d′) ∈ Preconditions(a j) ∧ d 6= d′ then
13: add order a j ≺ ai

14: return 〈{a1,a2, ...,an},≺〉

the preconditions then an ordering constraint ak ≺ ai is added. This selection is non-

deterministic, which means that it is possible that there is al such that l > k and al

supports the preconditions of ai. Lines 10-13 add an ordering constraint a j ≺ ai if the

effects of ai threat the preconditions of a j.

[Bäckström, 1994] has shown that the problem of finding an optimal partial-order

plan from a total-order plan is NP-hard under several definitions of optimality. The

purpose of the non-deterministic selection in algorithm 4.2 (line 6) is to enable ex-

haustive exploration of every possible action in order to get an optimal partial-order

plan. However, exhaustive exploration could be very expensive due to a large number

of possible combinations of the selection, in particular when there is a deadline of the

searching process. Thus, the algorithm can be set to perform a greedy selection by

changing line 6 into: max k < i. With this change, the algorithm complexity will be

polynomial but there is no guarantee that the partial-order plan is globally optimal –

for example, it is possible that there is a partial-order plan whose length is less than the

one generated by the algorithm.

100 Chapter 4. Planning Configuration Changes

4.1.4 State Trajectory Constraint of PDDL3

Planning Definition Domain Language (PDDL) is a domain-independent language

used in the International Planning Competition (IPC) to model planning problems.

[Gerevini et al., 2009] is introducing the latest version of PDDL i.e. PDDL3. Unlike

the previous versions, such as PDDL2, PDDL3 has the notions of state trajectory con-

straints which assert conditions that must be satisfied by the entire sequence of states

visited during the execution of the plan. The constraints are expressed in first-order

logic formulas over state predicates using six modal operators i.e. at-end, always,

sometime, sometime-after, sometime-before, and at-most-once. Definition 4.4

formally specifies the semantics all modal operators.

Definition 4.4 (Semantics of State Trajectory Constraint [Gerevini et al., 2009]).
Given a domain D , a plan π, an initial state s0, and the states visited by π are 〈s0,s1, ...,sn〉.
If G is the formula of the state trajectory constraint, then π is valid if it visits states

〈s0,s1, ...,sn〉 that satisfies the goal: 〈s0,s1, ...,sn〉 |= G .

The semantics of each modal operator are:
〈s0,s1, ...,sn〉 |= (at-end φ)

iff sn |= φ;

〈s0,s1, ...,sn〉 |= (always φ)

iff ∀i : 0≤ i≤ n .si |= φ;

〈s0,s1, ...,sn〉 |= (sometime φ)

iff ∃i : 0≤ i≤ n .si |= φ;

〈s0,s1, ...,sn〉 |= (sometime-after φ ψ)

iff ∀i . if si |= φ then ∃ j : i≤ j ≤ n .s j |= ψ;

〈s0,s1, ...,sn〉 |= (sometime-before φ ψ)

iff ∀i . if si |= φ then ∃ j : 0≤ j < i .s j |= ψ;

〈s0,s1, ...,sn〉 |= (at-most-once φ)

iff ∀i .0≤ i≤ n if si |= φ then ∃ j : j ≥ i , ∀k : k > j,sk |= ¬ψ;

where φ and ψ are first-order formulas and there is no nested modal operator.

�

There are some planners that natively support PDDL3. One of them is SGPlan

[Hsu and Wah, 2008]. It solves a PDDL3 problem by partitioning a large planning

problem into subproblems, each with its own goal, and resolves inconsistent solutions

using the extended saddle-point condition. However, there is no sufficient information

on how the problem can be effectively partitioned and solved. Its implementation is

4.1. Planning with Extended Goal 101

closed source, while its binary distribution cannot solve problems other than IPC-5

domains6.

Another planner that natively supports PDDL3 is MIPS-XXL [Edelkamp and Jab-

bar, 2008]. It compiles every state trajectory constraint into a Büchi automaton whose

state can be updated by artificial actions. It uses Metric-FF [Hoffmann, 2003] as the

base planner. During search, the base planner composes the actions to generate the

solution plan, while also updating the state of the automatons by executing the ar-

tificial actions in order to maintain the state trajectory constraints. Unlike SGPlan,

MIPS-XXL can solve problems other than IPC-5 domains.

Based on the same idea, [Baier and McIlraith, 2006] and [Gerevini et al., 2009]

introduced techniques that compile a PDDL3 problem into a PDDL2 problem – they

compile every state trajectory constraint into a finite automaton whose states are repre-

sented by artificial variables. Both techniques differ on the way to model the automa-

ton’s state transitions: the former uses axioms, while the latter modifies the original

actions by adding extra conditional effects.

The main advantage of these compilation schemes is that any planner which sup-

ports PDDL2 can solve a PDDL3 problem without any modification. However, only

some heuristics such as hFF that supports a planning problem with axioms and condi-

tional effects. Some good admissible heuristics such as hLM−Cut [Helmert and Domsh-

lak, 2009] and hLM do not support axioms nor conditional effects.

This subsection introduces an alternative compilation scheme by adapting the tech-

nique described in §4.1. Similar with the above compilation schemes, every state tra-

jectory constraint is represented as a finite automaton. However, the automaton transi-

tions are represented using artificial actions, where no axiom and no conditional effect

are required to model the automaton state transition. Thus, any heuristic that does

not support axioms or conditional effects can be used to solve the problem using this

compilation scheme.

The compilation scheme of the state trajectory constraint is summarised in the fol-

lowing paragraphs.

at-end
Expression (at-end φ) is just an alias of goal modal operator of PDDL2. Thus,

the compilation is just straightforward ,that is by combining every at-end expression

6The automated planning community is holding a biennial planning competition called as Interna-
tional Planning Competition (IPC). IPC-5 domains is a set of planning problems used to benchmark the
planners in the fifth International Planning Competition.

102 Chapter 4. Planning Configuration Changes

into a conjunction formula and then assign it as the goal of the compiled planning

problem. For example, if (at-end φ1),(at-end φ2), ...,(at-end φm) ∈ G then it is

converted to: (goal (and φ1 φ2 ... φm)). Commonly, the planner further compiles

the goal formula into lower level representation such as FDR or STRIPS by converting

the formula to DNF. Each DNF clause becomes the precondition of an artificial action

that makes an artificial predicate true, where the predicate is false at the initial state

and true at the goal state. Thus, the planner can only reach the goal state if one of the

clauses is satisfied.

always
Expression (always φ) has equivalent semantics to the global constraint i.e. formula

φ must be always satisfied at every visited state. Thus, the technique described in §4.1

can be applied to this modal operator. An artificial predicate (satisfy-always) is

introduced as the status flag of the formula – it is true if the formula is valid, other-

wise false. The predicate is false at the initial state, since we assume that the initial

state does not satisfy the formula. And it is true at the goal state. An artificial action

verify-always is created to verify every visited state and defined as follows:

(:action satisfy-always

(:precondition (and (not (satisfy-always)) φ)

(:effect (satisfy-always)

)

If there are multiple instances of always formula, then they can be combined into a

single formula so only one artificial predicate and one artificial action are required. For

example, if (always φ1),(always φ2), ...,(always φm) ∈ G then φ = φ1 ∧ φ2 ∧ ...∧
φm.

sometime
The interpretation of (sometime φ) means that φ must be satisfied in at least one state.

An artificial action is introduced which must be selected by the planner at any point

of the plan to ensure that the formula has been satisfied. w is a unique symbol to

distinguish the expression from others, which can be a number. Assume that w = 1,

then an artificial predicate sometime-1 is introduced whose value is false at the initial

state and true at the goal state. An artificial action verify-1 is introduced and defined

as follows:

(:action verify-sometime-1

(:precondition (and (not (sometime-1)) φ)

4.1. Planning with Extended Goal 103

(:effect (sometime-1)

)

Unlike always, if there are multiple instances of sometime expression, then they

would not be combined since every instance can be satisfied at different states. Thus,

each instance must be handled independently with others.

at-most-once
Expression (at-most-once φ) is interpreted that φ may not be satisfied, or once it

becomes true until a state is reached in which φ becomes and remains false. Based

on this interpretation, two artificial predicates are required to represent the true-period

and post-true-period. Assume w1 and w2 are unique symbols (they can be simply

numbers) to as the flags of true-period and post-true-period. An artificial predicate

(at-most-once-w1) is introduced that represents the plan entering the true-period

i.e. states 〈si,si+1, ...,s j〉 where ∀k . i ≤ k ≤ j ⇒ sk |= φ. The predicate is false at

the initial state and will become true whenever φ is true. Another artificial predi-

cate (at-most-once-w2) represents that the plan execution has entered the post-true-

period i.e. states 〈s j+1,s j+2, ...,sn〉 where ∀l .(j+1)≤ k ≤ n⇒ sk |= ¬φ. This predi-

cate is false at the initial state. Since action verify-always is always executed after

executing another action, then it can be used to update the predicates’ value along the

plan by adding two conditional effects which are:

1. (when φ (at-most-once-w1)), which sets predicate (at-most-once-w1) to

be true whenever the plan enters the true-period;

2. (when (and (at-most-once-w1) (not φ)) (at-most-once-w2)) which sets

predicate (at-most-once-w2) to be true whenever the plan leaves the true-

period and enters the post-true-period.

To avoid the plan entering the true-period for the second time, then the condition

(imply (at-most-once-w2) (not φ)) is added into the preconditions of action

verify-always.

sometime-after
Interpretation of (sometime-after φ ψ) is that if φ is true at particular state then

ψ must be true at the same or next state. An artificial predicate (after-w) is intro-

duced to represent ψ may not be achieved. Note that w is a unique symbol which

can be a number. It is true at the initial state and goal. Based on the interpretation,

104 Chapter 4. Planning Configuration Changes

a conditional effect (when (and φ (not ψ)) (not (after-w))) is added to action

verify-always so that whenever φ is true and ψ is false after execution, then the ar-

tificial predicate is set false in order to enforce the plan to achieve ψ at the next state,

since the goal requires predicate (after-w) to be true. Another conditional effect

(when (and ψ (not (after-w))) (after-w)) is added that sets the predicate true

whenever ψ has been achieved.

sometime-before
Expression (sometime-before φ ψ) means that whenever φ is true then ψ must be

true at the previous state. An artificial predicate (before-w) is introduced to represent

a condition that ψ is true at particular state. Note that w is a unique symbol which

can be a number. The predicate is false at the initial state. To update the predicate,

conditional effect (when ψ (before-w)) is added to action verify-always that sets

the predicate true whenever ψ is true. Since φ may not be achieved unless ψ has been

achieved, then condition (imply φ (before-w)) is added to the precondition of action

verify-always.

4.2. Configuration Task as Classical Planning Problem 105

SFP Task

Normalised SFP Task

FDR Task

FDR Plan

SFP Plan

Normalisation

Translation

Planning

Postprocessing

Figure 4.3: Overview of the steps for solving SFP Task

4.2 Configuration Task as Classical Planning Problem

A configuration task is the problem of determining the workflow that can bring the sys-

tem from one to another configuration state. §3.3 has shown an example of a configura-

tion state that can be described in SFP. Thus, we can formally define the configuration

task as the following.

Definition 4.5 (SFP Task).
An SFP configuration task is a 3 tuple Σ = 〈σ0,σg,Γ〉, where σ0 ∈ S is the current con-

figuration state of the system, σg ∈ S is the desired configuration state of the system,

and Γ is the type environment that holds the type of every element in σ0 and σg. �

An SFP task can be solved by compiling it into an FDR task, and then can be given

as the input of a classical planner for finding a solution plan. Figure 4.3 illustrates the

overview of the steps to solve an SFP task. The details of all steps are described in the

following subsections.

4.2.1 Normalisation

The aim of normalisation of the SFP task Σ = 〈σ0,σg,Γ〉 is to flatten the tree structure

of σ0 and σg. This is because the variables in SFP are organised in a tree-structure (see

106 Chapter 4. Planning Configuration Changes

definition 3.5 in §3.2.2.1), while the variables in FDR (as the target representation) are

organised in a flat-structure.

Definition 4.6 (Flat-Store).
A flat-store is a set of reference-value pairs Ω = { ωi | ωi = (R ×V) }. It is the flat

version of store σ ∈ S . If ω = 〈r,υ〉, then we call r as the SFP name and υ as the SFP

value. Every reference ri can be classified as follows:

• ri is a prevail reference of Ω

iff 〈ri,υi〉 ∈Ω

• ri is a nested reference of Ω

iff 〈ri,υi〉 6∈Ω and ∃ j .r j ⊂R ri ∧ 〈r j,υ j〉 ∈Ω

• ri is an invalid reference of Ω

iff ri is neither prevail nor nested

�

Based on the above definition, we then can define the normalised SFP task which

is the product of the normalisation process.

Definition 4.7 (Normalised SFP Task).
A normalised SFP task is a 3 tuple Λ= 〈Ω0,Ωg,Γ〉, where Ω0 is the normalised current

configuration state, Ωg is the normalised desired configuration state, and Γ holds the

type of every element in Ω0 and Ωg. �

Definition 4.8 (Function normalise).
Function normalise converts store σ ∈ S to a normalised store Ω by visiting every

element of σ and its children stores. If r ∈ R and υ ∈ V are the element’s absolute

path and value of σ, then a pair 〈r,υ〉 is added to Ω.

normalise : S → P (Ω)

normalise(σ) := normalisestore(σ,∅I)

normalisestore : S ×R → P (Ω)

normalisestore(∅S ,ns) := {}
normalisestore(〈id,v〉 :: s,ns) :=

if v ∈ S then {〈r,∅S 〉} ∪ normalisestore(v,r) ∪ normalisestore(s,ns)

else {〈r,v〉} ∪ normalisestore(s,ns)

where r = ns⊕ id

�

4.2. Configuration Task as Classical Planning Problem 107

Example.
Let σ = 〈a,〈c,3〉 :: ∅S 〉 :: 〈b,∅S 〉 :: ∅S , then

normalise(σ) = {〈a :: ∅I,∅S 〉,〈a :: c :: ∅I,3〉,〈b :: ∅I,∅S 〉}

To get Λ, σ0 and σg must be converted to Ω0 and Ωg respectively as follows:

Ω0 = normalise(σ0)

Ωg = normalise(σg)

4.2.2 Translation

The translation process aims to convert a normalised SFP task Λ = {Ω0,Ωg,Γ} to

an FDR task Π = 〈V,A,s0,sg〉. The translation is done in six steps. The first five

steps generate the variables V , the actions A, the initial state s0, the goal sg, and the

global constraint formulae Sβ respectively. These are the components of the planning

problem with global constraint Θ (see definition 4.1). The final step compiles Θ to

classical planning Π using the technique described in §4.1. The details of all steps are

described in the following paragraphs.

Step 1 (Variables) Generate A (FDR variables) by selecting every element in current

state whose type is neither an action nor a global constraint. The element’s type can

be found in Γ. The variable’s value domain is determined by collecting all values in

the current (Ω0) and desired (Ωg) state whose type is a subtype of the variable’s type.

Every value in the precondition and effect of SFP action whose type is subtype of the

variable’s type, should be added as well to the variable domain.

Step 2 (Global Constraint) Determine the global constraint formulae by searching

for an element 〈rβ,υβ〉 ∈ Ωg where rβ = global :: ∅I and υβ ∈ C is the global con-

straints formula. The formula must be processed as follows:

1. Every nested7 reference must be rewritten into an existential quantification of

conjunction over prevail references such that there is no nested reference in the

final formula. Without loss of generality, this process can be illustrated using the

example specification in figure 3.11. In line 16, the constraint has a conjunction

clause with a nested reference i.e. pc1.refer.running = true. Since there

are two objects that has type Service i.e. s1 and s2, then the clause should be

rewritten as:
7See definition 4.6.

108 Chapter 4. Planning Configuration Changes

(pc1.refer 6= null) ∧
((pc1.refer= s1.web) ⇒ (s1.web.running= true)) ∧
((pc1.refer= s2.web) ⇒ (s2.web.running= true))

2. Reduce the variable domain’s members based on MemberOfList constraints. For

example, since the variable pc1.refer has type *Service (reference of Ser-

vice), then its domain is {s1,s2,null}. However, based on the above global

constraints, then value null shoud be removed from the domain. Thus, the final

domain of pc1.refer is {s1.web,s2.web}. And since null has been removed

from the variable domain, then clause (pc1.refer 6= null) can be safely re-

moved from the global constraints formula.

The result of the above process is a logic formula over SFP atoms, where each SFP

atom is an assignment in the form of r = υ. Since r refers to the name of variable

v ∈V , then the formulae can be converted to a logic formulae over FDR atoms since r

can be replaced by variable v. This formula is then set to Sβ.

Step 3 (Actions) Generate the set of actions A = {a1, ...,am} by collecting every el-

ement 〈ra,υa〉 ∈Ω0 where (r : act)∈ Γ, and υ∈A is an SFP action. Every SFP action

must be grounded by substituting every parameter with the value whose type is subtype

of the parameter’s type. After substitution, every nested reference in the precondition

must be rewritten so that all references in the precondition are prevail references. This

can be done using the scheme described in step 2. And then the precondition formula is

converted into a Disjunction Normal Form (DNF) where for each conjunction clause,

the original action is copied and the new action’s precondition is replaced by the con-

junction clause. Afterwards, the original action is then discarded8. This process yields

a set of actions, each of which is an SFP grounded action.

Definition 4.9 (SFP Grounded Action).
An SFP grounded action is a 5-tuple â = 〈 ˆname, ˆcost, ˆparams, ˆpre, êff〉, where:

• ˆname ∈ R , is the action name;

• ˆcost ∈ R0+, is a non-negative action cost defined in SFP by the user;

• ˆparams = {pari | pari = 〈id,x〉, id ∈ I,x ∈ V}, is the set of parameters;

• ˆpre and êff, are conjunctions over SFP atoms, called as precondition and effect
respectively.

8The precondition is true iff any conjunction clause is true.

4.2. Configuration Task as Classical Planning Problem 109

�

Note that the parameters and their value are still kept since they will be passed to the

software component during execution.

Finally, every SFP grounded action is converted to the FDR action a= 〈name,cost,

pre,eff〉 such that:

• ˆname and ˆparams are encoded as string literal9, and then it is assigned to name,

• cost = ˆcost,

• for every SFP atom r = υ in ˆpre, then pre(v) = υ iff r is the name of variable v,
and

• for every SFP atom r = υ in êff, then eff(v) = υ iff r is the name of variable v.

Step 4 (Initial State) Generate the initial state s0 as variable assignment over V =

{v1, ...,vn} such that s0(vi) = υi iff 〈ri,υi〉 ∈Ω0 and ri is the name of variable vi.

Step 5 (Goal) Generate the goal sg as variable assignment over V = {v1, ...,vn} such

that sg(vi) = υ iff 〈ri,υi〉 ∈Ωg and ri is the name of variable vi;

Step 6 (Compile Θ to Π) Steps 1-5 generates components of Θ = 〈V,A,s0,sg,Sβ〉,
which is the planning problem with global constraint (see definition 4.1). Thus, the

FDR task Π = 〈V,A,s0,sg〉 can be generated by calling function COMPILE-GLOBAL

(see algorithm 4.1) where:

Π = COMPILE-GLOBAL(V,A,s0,sg,Sβ)

4.2.3 Planning

Planning involves finding the solution plan by giving the FDR task Π as the input of

the classical planner. Any planner that supports FDR can be used to solve the task. In

the planning step, we employ a multi-heuristics and two-stages strategy that aims to

increase the coverage of the planner as well as to generate the suboptimal plan under

given deadline10.

The multi-heuristics strategy is based on the fact of International Planning Com-

petition (IPC) results that there is no heuristic which is dominant on every problem
9The string literal will be decoded later to convert an FDR plan to an SFP plan.

10In practice, the global optimal plan is not the priority in particular when a reconfiguration must be
performed as soon as possible to address a failure.

110 Chapter 4. Planning Configuration Changes

domain. In the sense that the heuristic is sensitive to the characteristics of the problem.

Thus, in order to increase the probability of finding the plan, multiple heuristics can be

used in parallel by running several planner instances, each of which is using particular

heuristic. This can be implemented using a planner that supports multiple heuristics,

or several planners that have different heuristics.

There are two types of heuristic. First is the “admissible” heuristic which can be

used with A* search algorithm to find a global optimal plan. Second is the “inadmis-

sible” heuristic which can be used with a greedy search algorithm to find a satisfic-

ing plan – the plan is not guaranteed to be global optimal11. However, the admissible

heuristic with A* search is naturally much slower than inadmissible with greedy search

since finding an optimal plan is much more difficult than finding a satisficing plan. In

the two-stages strategy, we combine them by employing an inadmissible heuristic at

the first stage in order to find the plan as soon as possible although it is not global op-

timal. Afterwards, an admissible heuristic is employed at the second stage where the

planning problem has been shrunk by eliminating non-artificial actions which are not

selected at the first stage. The aims of the second stage is to optimise the plan found at

the first stage.

In implementation, combining these two strategies is straightforward where multi-

ple planner instances are running in parallel, each of which is using particular inadmis-

sible heuristic with greedy search at the first stage. Whenever an instance has found

a plan, it will shrink the planning problem and then restart the search using admissi-

ble heuristic with A* search. All searches will stop whenever the deadline has been

reached.

4.2.4 Post-processing

The post-processing has two main objectives. First is converting the total-order plan

generated by the planner to a partial-order plan. This will enable parallel execution

which could decrease the execution time. Second is converting every FDR action back

to SFP action. This reverse-conversion is required since the deployment system is

using SFP representation to perform particular task (see §5 for more details). For

example, the controller will use the reference of the SFP action to determine which

agent should be requested in order to execute a particular action.

Assume π is an FDR plan generated by the planner. Then the post-processing

11In classical planning, the optimality of a plan is equal to the total cost of all actions. Hence, the
plan is global optimal iff there is no other plan that has less cost.

4.2. Configuration Task as Classical Planning Problem 111

is performed by calling function GENERATE-PARTIAL-ORDER (see definition 4.2) in

order to remove the artificial actions and generate the partial-order plan πpo, i.e.:

πpo = {Apo,≺}= GENERATE-PARTIALORDER(π)

where Apo is a set of actions of the particular order plan, ≺ is a set of partial ordering

constraints between the actions.

Definition 4.10 (SFP Plan).
An SFP plan is a 2-tuple πSFP = 〈Â,≺〉, where:

Â = {âi | âi is an SFP grounded action}. �

Afterwards, πpo is converted to SFP plan πSFP by converting every FDR action a∈ Apo

to SFP grounded action â. This is the opposite process of step 3 of §4.2.2.

4.2.5 Example

This subsection gives an example of the above processes to solve an SFP configuration

task described in §3.3. Note that for brevity, a reference is written in an informal form,

for example: a reference a : b : ∅I is written as a.b.

4.2.5.1 Normalisation

Using function normalise, the specifications of the current and the desired states (see

figure 3.10 and 3.11) were converted to flat stores as described in the following table.

112 Chapter 4. Planning Configuration Changes

ri υi ∈Ω0 υi ∈Ωg τi ∈ Γ

s1 object object Machine

s1.dns "ns.foo" "ns.foo" str

s1.web object object Service

s1.web.running true false bool

s1.web.port 80 80 num

s2 object object Machine

s2.dns "ns.foo" "ns.foo" str

s2.web object object Service

s2.web.running false true bool

s2.web.port 80 80 num

pc1 object object Client

pc1.refer s1.web s2.web *Service

pc2 object object Client

pc2.refer s1.web s2.web *Service

Note that the first column contains the variable references, the second column contains

the value of Ω0 (current value), the third column contains the value of Ωg (desired

value), and the fourth column contains the variables’ type.

4.2.5.2 Translation

The first step of translation extracts variables from Ω0 and then assigns a domain to

every variable. This yielded the following variables where the left hand-side is the

variable name and the right is the variable domain.

4.2. Configuration Task as Classical Planning Problem 113

ri Dri

s1 {object}
s1.dns {"ns.foo"}
s1.web {object}
s1.web.running {true,false}
s1.web.port {80}
s2 {object}
s2.dns {"ns.foo"}
s2.web {object}
s2.web.running {true,false}
s2.web.port {80}
pc1 {object}
pc1.refer {null,s1.web,s2.web}
pc2 {object}
pc2.refer {null,s1.web,s2.web}

The second step of translation rewrites the nested references in the global con-

straints formula. After rewriting, the formula will be:

(pc1.refer 6= null) ∧
((pc1.refer= s1.web) ⇒ (s1.web.running= true)) ∧
((pc1.refer= s2.web) ⇒ (s2.web.running= true)) ∧

(pc2.refer 6= null) ∧
((pc2.refer= s1.web) ⇒ (s1.web.running= true)) ∧
((pc2.refer= s2.web) ⇒ (s2.web.running= true))

Based on the above global constraints, the domains of pc1.refer and pc2.refer

can be reduced by removing null. Afterwards, clause (pc1.refer 6= null) and

(pc2.refer 6= null) can be safely removed from the global constraints formula. Thus,

the final variable domains are:

114 Chapter 4. Planning Configuration Changes

ri Dri

s1 {object}
s1.dns {"ns.foo"}
s1.web {object}
s1.web.running {true,false}
s1.web.port {80}
s2 {object}
s2.dns {"ns.foo"}
s2.web {object}
s2.web.running {true,false}
s2.web.port {80}
pc1 {object}
pc1.refer {s1.web,s2.web}
pc2 {object}
pc2.refer {s1.web,s2.web}

And the final global constraints formula is:

((pc1.refer= s1.web) ⇒ (s1.web.running= true)) ∧
((pc1.refer= s2.web) ⇒ (s2.web.running= true)) ∧
((pc2.refer= s1.web) ⇒ (s1.web.running= true)) ∧
((pc2.refer= s2.web) ⇒ (s2.web.running= true))

The third step of translation is grounding the SFP actions and then converting

them to FDR actions. There are 6 SFP actions i.e. s1.web.start, s1.web.stop,

s2.web.start, s2.web.stop, pc1.redirect, and pc2.redirect. By substituting

the parameters, the grounding and the convertion processes will yield 8 FDR actions,

which are:
• name: s1.web.start()

pre: s1.web.running=false

eff: s1.web.running=true

• name: s1.web.stop()

pre: s1.web.running=true

eff: s1.web.running=false

• name: s2.web.start()

pre: s2.web.running=false

eff: s2.web.running=true

4.2. Configuration Task as Classical Planning Problem 115

• name: s2.web.stop()

pre: s2.web.running=true

eff: s2.web.running=false

• name: pc1.redirect(s=s1.web)

pre: s1.web.running=true

eff: pc1.refer=s1.web

• name: pc1.redirect(s=s2.web)

pre: s2.web.running=true

eff: pc1.refer=s2.web

• name: pc2.redirect(s=s1.web)

pre: s1.web.running=true

eff: pc2.refer=s1.web

• name: pc2.redirect(s=s2.web)

pre: s2.web.running=true

eff: pc2.refer=s2.web

The fourth and the fifth steps of translation are direct conversions from Ω0 and Ωg

of SFP to s0 and sg of FDR respectively.

In the sixth step of translation, the FDR task will be compiled into a classical

planning problem using the compilation technique described in §4.1. Since the final

global constraints is a conjunction of simple implications, then we can use the simple-

implication compilation rules of definition 4.3 to compile the constraints. This will

yield the following FDR actions:

• name: s1.web.start()

pre: s1.web.running=false ∧ pc1.refer= s2.web ∧
pc2.refer=s2.web ∧ s2.web.running=true

eff: s1.web.running=true

• name: s1.web.stop()

pre: s1.web.running=true ∧ pc1.refer= s2.web ∧
pc2.refer=s2.web ∧ s2.web.running=true

eff: s1.web.running=false

• name: s2.web.start()

pre: s2.web.running=false ∧ pc1.refer= s1.web ∧
pc2.refer=s1.web ∧ s1.web.running=true

eff: s2.web.running=true

116 Chapter 4. Planning Configuration Changes

• name: s2.web.stop()

pre: s2.web.running=true ∧ pc1.refer= s1.web ∧
pc2.refer=s1.web ∧ s1.web.running=true

eff: s2.web.running=false

• name: pc1.redirect(s=s1.web)

pre: s1.web.running=true ∧ s1.web.running=true ∧
s2.web.running=true

eff: pc1.refer=s1.web

• name: pc1.redirect(s=s2.web)

pre: s2.web.running=true ∧ s1.web.running=true ∧
s2.web.running=true

eff: pc1.refer=s2.web

• name: pc2.redirect(s=s1.web)

pre: s1.web.running=true ∧ s1.web.running=true ∧
s2.web.running=true

eff: pc2.refer=s1.web

• name: pc2.redirect(s=s2.web)

pre: s2.web.running=true ∧ s1.web.running=true ∧
s2.web.running=true

eff: pc2.refer=s2.web

Note that the artificial variable (vβ) and action (aβ) are not added to the final problem

since all conjunction clauses are simple implications.

4.2.5.3 Planning

By giving the FDR task to a classical planner, then the following sequential plan will

be generated:

s2.web.start() → pc1.web.redirect(s=s2.web) →
pc2.web.redirect(s=s2.web) → s1.web.stop()

4.2.5.4 Postprocessing

Finally, the postprocessing will yield the following partial-order plan:

4.2. Configuration Task as Classical Planning Problem 117

s2.web.start()

s1.web.stop()

pc1.redirect(s=s2.web) pc2.redirect(s=s2.web)

4.2.6 Loose Specification

A “loose” specification is very useful to overcome failures since the tool can automat-

ically select an alternative state from a set of possible final states, and then generate

and execute a workflow to transition from the current to the selected final state.

To generate a workflow that can achieve one of these states, the constraints formula

of the final state should be converted into a DNF formula. If the DNF after conversion

is in the form of ψ1 ∨ ...∨ψn where ψi is a conjunction of atoms, then an artificial

action ai
γ is introduced and ψi is set as its preconditions. An artificial variable vγ is

introduced whose value is false at the initial state, and true at the goal state. Finally,

all artificial actions will have an effect that sets variable vγ from false to true. This will

force the planner to select an artificial action in order to achieve the goal state, where

the preconditions of the selected artificial action is the selected final state.

However, generating all possible final states might not efficient, in particular when

the number of possible states are large. Thus, we might be only need to generate n final

states from m possible solutions, where n�m (n is much less than m). Unfortunately,

there is no guarantee that there is a workflow which can bring the system from the

current to any of these n states. We leave the answer of this issue as part of the future

works.

118 Chapter 4. Planning Configuration Changes

4.3 Summary

This chapter has presented a domain-independent technique to compile a planning

problem with extended goals into a classical planning problem. The main advantage

of this compilation is that we can use any classical planner to solve the problem with-

out any modification. And since the automated planning community is still actively

developing new techniques for solving classical planning problems, then we use these

new techniques to improve the performance of the planners.

The second part of this chapter presented a technique that translates a configuration

task defined in SFP language into a classical planning problem in FDR encoding. This

enables us to use the off-the-shelf classical planner, such as FastDownward [Helmert,

2006], for solving configuration tasks. To improve the performance of the planner,

we can use multi-heuristics and two-stage strategy to increase the planning coverage

as well as improving the plan optimality under given deadline. The total order plan

which is generated by the classical planner can then be processed further to generate a

partial order plan.

Chapter 5

Deploying Configuration Changes

Deployment is the process that implements configuration changes to bring the system

from the current to the desired state while preserving the global constraint. This can

be done in several ways. First is the orchestration technique where one agent acts as

the planner and the execution orchestrator of others. Although it is fairly simple to

be implemented, but this fully centralised architecture creates a potential bottleneck

in large systems, and can also be unreliable if the communications with the controller

is disrupted, which is particular relevant since reconfiguration frequently occurs as an

autonomic response to system failures.

On the other hand, we can use a fully distributed system where each agent can make

its own decision by independently planning and executing the workflow to achieve its

goal. It is scalable and there is no single point of failure. However, it is not a good solu-

tion to the above problem either. Avoiding deadlock or livelock situation may require

agents to have considerable global knowledge. Achieving such knowledge is likely

to result in even more costly inter-agent communication. Predicting the behaviour of

such systems is also more difficult and hence they are less acceptable to system admin-

istrators in real situations.

The main contribution of this chapter is providing a solution which aims to avoid

the shortcomings of two extremes: fully centralised and fully distributed approaches.

This solution is mixed: the workflow is generated centrally by an agent, which is then

used to automatically construct a set of purely reactive agents which choreograph the

execution of the workflow without the need for a central controller. This combina-

tion of centralised planning with distributed execution provides robust, autonomous

execution while retaining advantages of a predictable, deadlock-free workflow. In ad-

dition, using a regression algorithm of workflow execution enables the agents to form

119

120 Chapter 5. Deploying Configuration Changes

Goal and
Global

Constraint

Current
State

Planner Workflow

Resource
Component

Model
Orchestrator

Monitoring
Manager

...Agent Agent1

2

3

4

5

6

7

8

System
Administrator

Managed SystemController

Figure 5.1: The orchestration architecture.

a self-healing system by continuously attempting to maintain the goal state.

The chapter starts by giving details of the orchestration architecture with a closed-

loop control. It is followed by a section that presents the “choreography” technique

that constructs and executes the model of reactive agents. Finally, we summarise this

chapter in the last section.

5.1 Orchestration

In system configuration, orchestration is a deployment technique where an agent be-

comes the central controller of the system. It is acting as the planner which generates

the workflow, and the orchestrator which schedules the actions execution on other

agents in order to enforce the ordering constraint of the workflow. Other agents are

passive in the sense that they only perform a task requested by the controller. Figure

5.1 illustrates a typical orchestration architecture which mainly consists of four com-

ponents: the planner, the orchestrator, the monitoring manager, and the agent. The

relationships between the components can be described as follows1:

• The action database (2) holds a set of resource component models which would

normally be defined by an expert, system engineer, software engineer or other

specialist. Each model has a set of attributes that hold the state of a particular

resource and a set of actions that can be executed to change the resource’s state.

• Each managed node has an agent (8) that manages and monitors all resource

components. The monitoring manager (7) in the controller periodically pulls

1Each number represents the component in figure 5.1.

5.1. Orchestration 121

and aggregates the current state of all nodes by sending the request to every

agent in order to generate the current state of the system.

• System administrator specifies the goal state and the global constraint (1) that

should be achieved by the system. This specification together with the resource

component models and the current state are then used by the planner (3) to gen-

erate the workflow.

• To deploy the specification, the orchestrator (6) orchestrates the execution of the

workflow by scheduling the action that should be executed by target agent at

particular time.

It is possible for a failure to occur during the execution of a workflow. This archi-

tecture could implement a pragmatic approach to handling such failures. Each agent

is responsible for ensuring that each action is executed successfully. In addition, it

also has to detect and report any failure to the orchestrator. If such failure is reported,

then the execution of the workflow is immediately discontinued. The orchestrator will

then send a request to the planner to generate an alternative workflow for later execu-

tion. A notification may also be shown in the user interface so that the administrator

is informed of the failure, and can submit an alternative goal and global constraint, if

required.

This architecture could be used as a fully-automated “unattended” configuration

tool which automatically corrects any drift in the specification without any human

intervention. In figure 5.1, the dashed arrow lines show a loop process which could be

set to be activated periodically by the administrator in order for the system to verify and

correct any drift of the current state from the goal such as outdated software packages,

accidentally stopping a service, etc.

Figure 5.2 shows the architecture of an agent that controls a particular machine.

It has a daemon (3) that sends the state (1) to and receives the action (2) from the

controller. Based on particular specification, it automatically constructs a set of re-

source components, each of which is the software component that controls a particular

resource such as a file or a service.

An important feature of this architecture is that there is a clear separation between

the “configuration” (4) and the “implementation” (5) of the agent and the resource

component. This loose coupling makes the configuration platform independent. This

opens up the possibility to implement the agent and the resource component in different

platforms while they use the same configuration representation, for example SFP.

122 Chapter 5. Deploying Configuration Changes

SFP Object

Ruby Object

Shell
Commands

Resource
Ruby API

Component

Daemon

Agent

State Action
1 2

3

4

5

Figure 5.2: The architecture of an agent where the deployment part of the resource

component is implemented in Ruby.

Orchestration is fairly simple to implement and operate since it is similar to the

typical organisation structure where every decision is made centrally. We can easily

predict the behaviour of the whole system because every configuration change is based

on a deterministic workflow, which can be reviewed and approved before execution. In

practice, a predictable system is more acceptable to system administrator than another.

In addition, the communication cost is not significant because every agent only requires

to communicate with the controller. It does not need to contact other agents to have

the global knowledge since every global conflict will be resolved by the controller.

However, this simplicity comes at a price: the controller agent becomes the single-

point of failure. Any unreliable communication or hardware can disrupt the operation

of the whole system. In addition, the controller needs to plan the workflow for every

changes, even the small ones, where the global knowledge must be taken into account

on every planning. This is relatively inefficient for “repetitive” reconfiguration where

some parts of the current plan could be reused to achieve the goal. These problem will

be solved with the choreography technique described in the next section.

5.2. Choreography 123

5.2 Choreography

Choreography is the process to define a “global scenario” that should be executed by

every agent to implement particular specification. The global scenario is the global

plan generated by the planner. If the plan involves only a single agent, then the exe-

cution can be performed in a straightforward way. However, if the scenario involves

more than one agent, then it must be split up into a set of “local scenarios”, each of

which is for an agent. We refer to one local scenario as a local Behavioural Signature

(BSig) model which defines the local goal that should be achieved by the agent, and

specifies which local changes (actions) can be made under what circumstances. We

refer the set of all local BSig models as the global BSig model.

In choreography, the configuration deployment is divided into two parts. First is

choreographing where from a set of agents, one of them2 acts as a choreographer that

aggregates the current states of other agents, does the planning to generate the global

plan, and then uses the plan to construct the set of local BSig models, each of which

is sent to a particular agent. Second is execution where every agent executes the local

BSig model using a regression technique by finding and immediately executing the

necessary actions that can repair any flaw in the local goal or the action’s precondition.

Every agent will perform peer-to-peer communications with particular agents, as spec-

ified in its BSig model, to request the necessary remote preconditions before executing

an action. Whenever an agent cannot repair a particular flaw due to some reasons, such

as there is no action that can repair the flaw or the supporting action’s preconditions

cannot be satisfied, then a re-choreographing must be done to generate a new global

plan.

The BSig model can be transient or persistent. A transient model will be removed

whenever the agents have attained their local goal. On the other hand, the persistent

model will still be kept although the goal has been achieved. The combination of the

persistent models and the regression algorithm of workflow execution enable the agents

to form a self-healing system by periodically executing the models. This is possible

because the regression execution makes the plan become valid when the system is

either at initial or at any intermediate state of the plan. Hence, the agents can perform

an “immediate response” to correct particular drifts from the desired state without the

need of re-choreographing (replanning).

2The choreographer can be dynamically selected from the available agents. This dynamic selection
is not covered in this thesis.

124 Chapter 5. Deploying Configuration Changes

5.2.1 Assumptions

This choreography technique is based on several assumptions. First, the managed

system has a set of resources, each of which has a set of variables that represent its

state. Every agent has a set of actions can change the state of particular resource.

Based on the actions, the variables can be classified into two types: local and global

variables. A variable is local if only a single agent that can change its value. On the

other hand, a variable is global if its value can be modified by more than one agent.

Based on experiences, most of the variables are classified into the first type while only

few of them are classified to the latter. The classification can be formalised as the

following paragraph.

Let Â = {Âi}n
i=1 be the set of all actions, and V̂ = {V̂i}n

i=1 ∪ V̂g is the set of all

variables of the system, where:

• n is the total number of agents;

• Âi and V̂i are the set of actions and local variables of agent i respectively. ∀i, j. if

i 6= j then V̂i∩V̂j = {} and Âi∩ Â j = {}.

• V̂g is the set of global variables.

Assume âi,k ∈ Âi and â j,l ∈ Â j are the actions of agent i and j respectively. Then the

rules of variable classification are:

• Variable v̂ is global iff ∃i, j. if i 6= j then v̂ ∈ Effects(âi,k) and v̂ ∈ Effects(â j,l);

• Variable v̂ is local of agent i iff v̂ ∈ Effects(âi,k) and 6 ∃ j. if i 6= j then v̂ ∈
Effects(â j,l).

The second assumption is that the SFP language is used to model the configurations

of the system. For simplicity, the agents are organised in a flat structure where each of

them has a unique identifier id ∈ I. Since the name of every SFP action is a reference

i.e. a list of identifiers, then its first identifier is used to identify the agent that owns the

action. For example, an action has name s1.web.start, then agent s1 is owner of the

action.

Consider the example of multi-services system illustrated in figure 3.1 whose cur-

rent state is given in listing 3.10. This specification of current state shows that the

system has four agents i.e. s1, s2, pc1, and pc2, where the classification of variables

is:

5.2. Choreography 125

global variables : {}
s1’s local variables : {s1.dns,s1.web.running}
s2’s local variables : {s2.dns,s2.web.running}
pc1’s local variables : {pc1.refer}
pc2’s local variables : {pc2.refer}

For comparison, consider a simple cloud system whose current state is described

in the following specifications:

1 // file: schemata.sfp (the resource models)
2 schema Cloud {
3 running: Boolean
4 def create_vm(vm: VM) {
5 condition { this.running = true; vm.in_cloud = null; }
6 effect { vm.in_cloud = this; }
7 }
8 def delete_vm(vm: VM) {
9 condition { this.running = true; vm.in_cloud = this; }

10 effect { vm.in_cloud = null; }
11 }
12 }
13 schema VM {
14 in_cloud : Cloud = null
15 }

1 include "schemata.sfp"
2 // current state
3 main {
4 cloud1 isa Cloud { running = true; }
5 cloud2 isa Cloud { running = true; }
6 vm1 isa VM { in_cloud = cloud1; }
7 }

This system has three agents which are cloud1, cloud2, and vm1. The first two are

managing the cloud infrastructures, while the latter is managing a virtual machine

which can be on one of the clouds. There is a single global variable that represents

the existence of vm1 i.e. vm1.in_cloud which can be modified either by cloud1 or

cloud2. The other two variables i.e. cloud1.running and cloud2.running are local

variables of cloud1 and cloud2 respectively. Hence, the classification of variables of

this system is:

global variables : {vm1.in_cloud}
cloud1’s local variables : {cloud1.running}
cloud2’s local variables : {cloud2.running}

126 Chapter 5. Deploying Configuration Changes

SFP Task

Normalised SFP Task

FDR Task

FDR Plan

SFP Plan

Normalisation

Translation

Planning

Postprocessing

Behavioural Signature Model

Constructing

Figure 5.3: Overview of choreographing steps for constructing the Behavioural Signa-

ture model based on given SFP configuration task.

5.2.2 Choreographing Behavioural Signature Model

Choreographing aims to automatically constructs a set of BSig models that enables

the agents to execute the plan for configuration changes in a distributed way while

preserving the ordering constraints. An ordering constraint itself is a constraint where

one action must be execution before or after another one in order to satisfy particular

conditions e.g. a database service must be started before a web service is started.

Failing to satisfy the ordering constraint can make the system entering a period where it

does not work properly. For example, a web service fails to generate a correct response

since it cannot the database which has not been started yet.

Figure 5.3 gives an overview of the choreographing steps. The first four (normali-

sation, translation, planning, and postprocessing) are the steps to generate an SFP plan

for an SFP configuration task. While the last one is the step to construct the local BSig

models from the plan. Since the first four have been described in §4.2, then here we

only give details of the last step. We start by giving the definition of the BSig model.

Definition 5.1 (Behavioural Signature Model).
Assume A = {α1, ...,αn} is the set of agents, then the local Behavioural Signature

5.2. Choreography 127

model of agent αi is Bi = 〈κi, Âi,provi,gi〉, where:

• κi ∈ N+, is the model’s serial number;

• Âi = { âi j | âi j is an SFP grounded action }, is the set of local actions;

• provi : Âi× V̂ → A , is the remote precondition provider function which returns
an agent that should be contacted to request the remote precondition.

• gi, is the partial variable assigment over V̂i∪V̂g called as the local goal.

A global Behavioural Signature model M = 〈A ,B〉, where B = {B1, ...,Bn}, and

∀i, j .κi = κ j. �

The above definition shows that every local model has the serial number (κ). It

must be sent in the peer-to-peer communications to ensure that every agent is executing

the same global plan. The agent must decline any request from other agents when it

receives a different serial number. Every action (âi j) in the model is an SFP grounded

action whose preconditions and effects are conjunctions over SFP atoms. Since the

action precondition can be provided by any agent, then we need to assign a provider

agent to every precondition (provi) so that the agent knows to whom it should send

the request of precondition, which can be other agent (remote precondition) or itself

(local precondition). The local goal (gi) is the partial assignment over local and global

variables.

Before constructing the BSig models, an SFP plan πSFP must be generated by the

choreographer. This is done centrally where the choreographer aggregates the current

state of every agent to get the global knowledge of the system3. And then it creates

and solves an SFP configuration task Σ using the technique described in §4.2.

There are three things that must be done to construct the BSig model from given

SFP plan. First is adding the necessary extra preconditions to particular actions in

order to maintain the ordering constraints in regression execution. Second is assigning

agents that can provide the preconditions of every action. And third is assigning a set

of local goal to every agent.

Extra Preconditions

Our regression execution algorithm, which will be introduced later, is purely based on

causality: an action will be selected and executed if it can repair the flaws on the goal

or the preconditions. However, this selection criteria might violate the global plan’s

3This is similar with planning step of orchestration technique.

128 Chapter 5. Deploying Configuration Changes

ordering constraints because the constraints are not only based on the causal-links4,

but also the threat resolutions which is shown in algorithm 4.25.

For the example, consider the following plan for constructing the BSig models for

agent a and b where arrows are the ordering constraints and dashed-arrows are the

causal-links:

a.setx()

 pre: a.x = 0
 b.y = 0

 eff: a.x = 1

Initial State

a.x = 0

b.y = 0

b.sety()

 pre: b.y = 0

 eff: b.y = 1

Goal

a.x = 1

b.y = 1

If we do not add extra precondition to replace the threat resolution ordering constraint,

in this case a.setx() ≺ b.sety(), then there are two possible execution sequences

i.e.:

1. Action sequence: a.setx()→ b.sety()

State transitions: {a.x=0,b.y=0}→ {a.x=1,b.y=0}→ {a.x=1,b.y =1}

2. Action sequence: b.sety()→ failed
State transitions: {a.x=0,b.y=0}→ {a.x=0,b.y=1}→ failed

The first sequence can reach the goal, while the second cannot. Note that b.sety()

can be selected in the second sequence since its effect supports the goal b.y=1 and the

initial state b.y=0 satisfies its precondition.

This problem can be addressed by adding the predecessor’s effects to the action’s

preconditions iff there is such threat resolution ordering constraints between them.

Consider the following modified plan:

a.setx()

 pre: a.x = 0
 b.y = 0

 eff: a.x = 1

Initial State

a.x = 0

b.y = 0

b.sety()

 pre: b.y = 0
 a.x = 1

 eff: b.y = 1

Goal

a.x = 1

b.y = 1

4A causal link is a directed arrow from action a1 to a2 where a1’s effects provide a2’s preconditions.
5Line 9 adds an ordering constraint based on the causal-link, while line 13 adds the constraint based

on the threat resolution.

5.2. Choreography 129

There is an additional atom a.x=1 (bold text), which is the effect of a.setx(), that is

added into preconditions of b.sety() since its effect (i.e. b.y=1) threats a precondi-

tion of a.setx() (i.e. b.y=0). With this extra precondition, the second sequence will

never occur since the “new preconditions” of b.sety() do not satisfy by the initial

state. Thus, only the first sequence which is possible to be executed in regression.

To apply this, we modify the algorithm 4.2 that converts a total-order into partial-

order plan. This modification is shown in algorithm 5.1 that has a few extra statements

i.e. lines 14-16. These lines will add the predecessor’s effect into the current action’s

preconditions when the action’s effects threats the predecessor’s preconditions. How-

ever, if the variable already exists in the preconditions, then it should not be added

since it is an adversary effect. This small modification still maintains the original’s

complexity which is polynomial if it uses greedy strategy.

Precondition Provider

Finding the agent provider of a precondition is based on the causal link. The agent is

set as the provider if it has an action whose effects provide the precondition. Let (v̂ =

υ) ∈ Preconditions(âi) is the precondition of action âi of agent i. Then provi(âi, v̂) =

id j iff (v̂ = υ) ∈ Effects(â j) where â j and id j are the action and identifier of agent j

respectively.

Local Goal

Every goal in the SFP configuration task must be assigned to an agent whose action

provides the goal. This is similar to finding the precondition provider i.e. finding an

agent whose action has an effect that provides the goal. Let v̂ = υ be the goal, then it

is assigned to agent i i.e. gi(v̂) = υ iff (v̂ = υ) ∈ Effects(â) and â ∈ Âi.

Choreographing Algorithm

Algorithm 5.2 summarises the choreographing process. Line 2 is the statement that

calls a function that solves an SFP task to generate the global plan. Note algorithm 5.1

(instead of 4.2) must be used in postprocessing in order to add the extra preconditions.

Line 3 defines the BSig model’s identifier which is assigned to every local model. Lines

4-9 construct the set of local models based on the generated plan. Lines 5-9 construct

the local model for agent αi that identifier idi. This step finds a set of agents (lines

5-7) that provides the precondition of every local action. Then it assigns a set local

130 Chapter 5. Deploying Configuration Changes

Algorithm 5.1 Generating partial-order plan and add necessary preconditions.

Require: A valid total-order plan π = 〈a1
β
,a1,a2

β
,a2, ...,an

β
,an,an+1

β
〉 generated after

compilation, where ai
β

is the artificial action.

1: function GENERATE-PARTIAL-ORDER (π)

2: for each action ai ∈ π do
3: Preconditions(ai)← Preconditions(ai)∧Preconditions(ai

β
)

4: for i← n down-to 1 do
5: for each (v = d) ∈ Preconditions(ai) do
6: choose k < i such that:

7: 1. (v = d) ∈ Effects(ak), and

8: 2. 6 ∃l : k < l < i .(v = d′) ∈ Effects(al) ∧ d 6= d′

9: add order ak ≺ ai

10: for each (v = d) ∈ Effects(ai) do
11: for j← (i−1) down-to 1 do
12: if (v = d′) ∈ Preconditions(a j) ∧ d 6= d′ then
13: add order a j ≺ ai

14: for each (v′ = d′′) ∈ Effects(a j) do
15: if v′ 6∈ Preconditions(ai) then
16: Preconditions(ai)← Preconditions(ai)∧ (v′ = d′′) .

Add preconditions.

17: return 〈{a1,a2, ...,an},≺〉

5.2. Choreography 131

Algorithm 5.2 Choreographing the BSig models for an SFP configuration task.

Require: Σ is the SFP task and agents = {α1, ...,αn} is the set of agents.

1: function CHOREOGRAPHING(Σ,agents)

2: πSFP← SOLVE-SFP-TASK(Σ) . see §4.1

3: κ← any unique number . BSig model’s identifier

4: for i← 1 to n do
5: for each action âi ∈ πSFP where Name(âi) = idi :: r do . idi is the

identifier of agent αi

6: for each (v̂ = υ) ∈ Preconditions(âi) do . precondition provider

7: provi(âi, v̂) = α j iff ∃â j .(v̂ = υ) ∈ Effects(â j)

8: for each goal (v̂ = υ) do . the local goal of agent αi

9: gi(v̂) = υ iff (v̂ = υ) ∈ Effects(âi)

10: return 〈agents,{Bi}n
i=1〉

132
C

hapter5.
D

eploying
C

onfiguration
C

hanges

s2.web.start()

pre: s2.web.running = false

eff: s2.web.running = true

s1.web.stop()

pre: s1.web.running = true
 pc1.refer = s2.web
 pc2.refer = s2.web

eff: s1.web.running = false

pc1.redirect(s=s2)

pre: s2.web.running = true

eff: pc1.refer = s2.web

pc2.redirect(s=s2)

pre: s2.web.running = true

eff: pc2.refer = s2.web

Goal

s1.dns = “ns.foo”

s1.web.running = false

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s2.web

Initial State

s1.dns = “ns.foo”

s1.web.running = true

s2.dns = “ns.foo”

s2.web.running = false

pc1.refer = s1.web

pc2.refer = s1.web

Agent

s1

s1

s2

s2

pc1

pc2

Figure 5.4: The global plan for choreographing the BSig models for the multi-services system (see figure 3.1), where the current and the

desired state are given in listing 3.10 and 3.10 respectively. Arrows are the ordering constraints. The precondition providers and the local goals

are generated based on the causal-links (dash-arrows). Every goal is assigned to the right side agent.

5.2. Choreography 133

goal (lines 8-9) to the agent. Finally, it returns the global BSig model which is ready

to be deployed to the target agents. The complexity of the algorithm is dominated by

the planning step since the model construction’s complexity is linear to the number of

actions of the plan.

Example 1: Multi-Services System

Figure 5.4 illustrates the choreographing process for a configuration task of the multi-

services system described in §3.3. The SFP plan consists of four actions that change

the state variables’ (grey) value from initial to the goal. The arrows are the ordering

constraints generated by the plan which achieves the goal and preserves global con-

straints. The dashed-arrows show the causal links of the goal and precondition which

are used to determine the agent providers and the local goals.

The following YAML codes are the global BSig model for this task generated by

the choreographer. There are four local models i.e. lines 1-16, lines 17-26, lines 27-

36, and lines 37-46, which are deployed to agent s1, s2, pc1 and pc2 respectively.

As you may notice that every local model has the same identifier: 10001. The local

goal (goals) of each agent is a set of variable-value pairs. Each model has a set of

local actions (actions), each of which has a name, a set of parameters, conditions

(conjunction of SFP atoms), and effects (conjunction of SFP atoms). The model also

has a list of precondition providers (provider).

1 s1:
2 id: 10001
3 goals: {s1.dns: "ns.foo", s1.web.running: false}
4 actions:
5 - name: s1.web.stop
6 parameters: {}
7 condition:
8 s1.web.running: true
9 pc1.refer: s2.web

10 pc2.refer: s2.web
11 effect: {s1.web.running: false}
12 provider:
13 s1.web.stop:
14 s1.web.running: s1
15 pc1.refer: pc1
16 pc2.refer: pc2
17 s2:
18 id: 10001
19 goals: {s2.dns: "ns.foo", s2.web.running: true}
20 actions:
21 - name: s2.web.start
22 parameters: {}
23 condition: {s2.web.running: false}

134 Chapter 5. Deploying Configuration Changes

24 effect: {s2.web.running: true}
25 provider:
26 s2.web.start: {s2.web.running: s2}
27 pc1:
28 id: 10001
29 goals: {pc1.refer: s2.web}
30 actions:
31 - name: pc1.redirect
32 parameters: {s: s2}
33 condition: {s2.web.running: true}
34 effect: {pc1.refer: s2.web}
35 provider:
36 pc1.redirect: {s2.web.running: s2}
37 pc2:
38 id: 10001
39 goals: {pc2.refer: s2.web}
40 actions:
41 - name: pc2.redirect
42 parameters: {s: s2}
43 condition: {s2.web.running: true}
44 effect: {pc2.refer: s2.web}
45 provider:
46 pc2.redirect: {s2.web.running: s2}

Example 2: Simple Cloud System

Consider another system described in §5.2.1. This simple cloud system is different than

the previous one because it has not only local (cloud1.running and cloud2.running)

but also a global variable (vm1.in_cloud). The system has three agents i.e. cloud1,

cloud2 and vm1. The first two agents have an action that can change the value of

vm1.in_cloud. Assume we define the following desired state for this system.

1 include "schemata.sfp"
2 // desired state
3 main {
4 cloud1 isa Cloud { running = true; }
5 cloud2 isa Cloud { running = true; }
6 vm1 isa VM { in_cloud = cloud2; }
7 }

The above specification shows that variable vm1.in_cloud is going to be changed

from cloud1 to cloud2. In other words, vm1 will be migrated from one to another

cloud infrastructure. Figure 5.5 illustrates the choreographing that implements such

configuration task. It shows that the goal vm1.in_cloud=cloud2 must be assigned to

agent cloud2 whose action cloud2.create_vm provides it. While agent cloud1 must

be set as the provider of the precondition vm1.in_cloud=null of action cloud2.create_vm.

The following YAML codes show the global BSig model for this task. It consists of

5.2. Choreography 135

cloud1.delete_vm(vm=vm1)

 pre: cloud1.running = true
 vm1.in_cloud = cloud1

 eff: vm1.in_cloud = null

Initial State

cloud1.running = true

cloud2.running = true

vm1.in_cloud = cloud1

Goal

cloud1.running = true

cloud2.running = true

vm1.in_cloud = cloud2

cloud2.create_vm(vm=vm1)

 pre: cloud2.running = true
 vm1.in_cloud = null

 eff: vm1.in_cloud = cloud2

Agent

cloud1

cloud2

cloud2

Figure 5.5: The global plan for choreographing the BSig models of simple cloud system.

The precondition providers and the local goals are generated based on the causal-links

(dash-arrows). Every goal is assigned to the right side agent.

three blocks i.e. lines 1-12, 13-24, and 25-29, which are deployed to agent cloud1,

cloud2 and vm1 respectively.

1 cloud1:
2 id: 10002
3 goals: {cloud1.running: true}
4 actions:
5 - name: cloud1.delete_vm
6 parameters: {vm: vm1}
7 condition: {cloud1.running: true , vm1.in_cloud: cloud1}
8 effect: {vm1.in_cloud: cloud1}
9 provider:

10 cloud1.delete_vm:
11 cloud1.running: cloud1
12 vm1.in_cloud: vm1
13 cloud2:
14 id: 10002
15 goals: {cloud2.running: true , vm1.in_cloud: cloud2}
16 actions:
17 - name: cloud2.create_vm
18 parameters: {vm: vm1}
19 condition: {cloud2.running: true , vm1.in_cloud: null}
20 effect: {vm1.in_cloud = cloud2}
21 provider:
22 cloud2.create_vm:
23 cloud2.running: cloud2
24 vm1.in_cloud: cloud1
25 vm1:
26 id: 10002
27 goals: {}
28 actions: []
29 provider: {}

136 Chapter 5. Deploying Configuration Changes

5.2.3 Executing Behavioural Signature Model

A global BSig model M is deployed by sending each local model Bi ∈M to agent

αi ∈A . This can be done asynchronously i.e. whenever an agent receives the model, it

immediately stops all processes and then replace the existing model with the new one

and resume the execution. The agent does not need to wait until all local models have

been deployed since the serial number (κ) can be used to check whether the agents’

local model are part of the same global model or not.

Every local model is executed using the cooperative regression reactive (CRR)

algorithm, which is motivated by two objectives. First is synchronising the agents’

executions to preserve the global plan’s ordering constraints. Second is minimising the

requirement of re-choreographing (replanning).

The first objective obligates the agents to be cooperative in order to maintain the

ordering constraint across the agents. However, the synchronisation is not achieved

using a time-based, but a state-request-response approach. The latter is better because

it does not require the agents to have the same time clock, which is usually very hard to

be implemented in heterogeneous environment. In addition, time-based is not reliable

since the execution time of the same action by the same agent may differ from one

to another occasion due to unpredictable load of resources such as CPU. On the other

hand, state-request-response approach only requires the agent sending the goal that

should be achieved by other agents and then acting based on their response. Although

it does not depend on time, but a communication link must be established between the

agents. In practice, this could be a problem in particular when there is no direct com-

munication link between them, for example an agent must communicate with another

agent which is behind a firewall. A solution for this problem might be using a proxy

as a bridge to enable “indirect” communication.

The second objective is achieved by executing the plan using regression technique.

It is inspired by the fact that if the plan is executed in progression then it is only valid

when the system is at the initial state of the plan. However, if it is executed in regres-

sion then it is valid when the system is either at the initial or one of the intermediate

states of the plan. This could avoid unnecessary re-choreographing, in particular when

a reconfiguration is needed to correct any drift from the desired state. Hence, the re-

configuration cost can be reduced since re-choreographing requires the choreographer

agent to aggregating the current state of every agent (communication cost) and plan-

ning (computation cost). In their works, [Fritz and McIlraith, 2007, Muise et al., 2011]

5.2. Choreography 137

s1.web.stop()

pre: s1.web.running = true
 pc1.refer = s2.web
 pc2.refer = s2.web

eff: s1.web.running = false

Goal

s1.dns = “ns.foo”

s1.web.running = false

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s2.web

Initial State

s1.dns = “ns.foo”

s1.web.running = true

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s2.web

s1.web.stop()

pre: s1.web.running = true
 pc1.refer = s2.web
 pc2.refer = s2.web

eff: s1.web.running = false

pc1.redirect(s=s2)

pre: s2.web.running = true

eff: pc1.refer = s2.web

Goal

s1.dns = “ns.foo”

s1.web.running = false

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s2.web

Initial State

s1.dns = “ns.foo”

s1.web.running = true

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s1.web

pc2.refer = s2.web

s1.web.stop()

pre: s1.web.running = true
 pc1.refer = s2.web
 pc2.refer = s2.web

eff: s1.web.running = false

pc2.redirect(s=s2)

pre: s2.web.running = true

eff: pc2.refer = s2.web

Goal

s1.dns = “ns.foo”

s1.web.running = false

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s2.web

Initial State

s1.dns = “ns.foo”

s1.web.running = true

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s1.web

s1.web.stop()

pre: s1.web.running = true
 pc1.refer = s2.web
 pc2.refer = s2.web

eff: s1.web.running = false

pc1.redirect(s=s2)

pre: s2.web.running = true

eff: pc1.refer = s2.web

Goal

s1.dns = “ns.foo”

s1.web.running = false

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s2.web

pc2.refer = s2.web

Initial State

s1.dns = “ns.foo”

s1.web.running = true

s2.dns = “ns.foo”

s2.web.running = true

pc1.refer = s1.web

pc2.refer = s1.web

pc1.redirect(s=s2)

pre: s2.web.running = true

eff: pc1.refer = s2.web

Figure 5.6: These are the other four possible states, besides the initial state, when

executing the plan in figure 5.4 with regression.

have shown that the regression is a viable technique to execute the plan in single agent

setting and proved to be robust on environment changes. However, we are not aware

of any work that uses regression for executing a plan in multi-agents setting.

The advantage of regression comparing to progression is described by example.

Consider the plan in figure 5.4 which is the solution for the configuration task of the

138 Chapter 5. Deploying Configuration Changes

multi-services system described in §3.3. With progression, the plan is only valid when

the system is at the initial state i.e.:

{ s1.dns="ns.foo", s1.web.running=true, s2.dns="ns.foo",

s2.web.running=false, pc1.refer=s1.web, pc2.refer=s1.web }

But with regression, the plan is valid for five possible states (including the initial state)

where the other four are illustrated in figure 5.6. This covers 5 times more possible

current states than progression.

This is possible because our algorithm will only select and execute an action that

can repair the existing goal flaws. The selection is purely based on the causal-links and

formally defined as follows:

Definition 5.2 (Action Selection). Assume (v̂ = υ) ∈ the current state and (v̂ = υ′) ∈
the goal, then (v̂ = υ′) is a flaw iff υ′ 6= υ. Given a set of flaws {(v̂1 = υ′1), ...,(v̂n =

υ′n)}, then an action â∈ Â can be executed (â is applicable) iff ∃i .(v̂i =υ′i)∈Effects(â).

�

The above definition shows that the selection is non-deterministic: the agent can

execute any applicable action. However, in practice, we might want to have a deter-

ministic selection due to some reasons, for example: a debugging process. This can be

easily done by sorting the actions into a total-order (a list), and then select the first or

the last applicable action in the list.

At this point, you may notice that this thesis has used several representations:

• SFP (introduced in §3) is a high-level representation for system administrator to

specify a configuration task;

• FDR (§2.2.3) is a low-level representation as the input for a classical planner to

solve a planning problem, and every SFP task can be automatically compiled

into an FDR task using a technique described in §4.2;

• YAML (§5.2.2) is a low-level representation to specify a BSig model, which is

automatically generated using a technique described in §5.2.2.

Every BSig model provides useful information to an agent on: 1) how to rationally

select an action, and 2) what preconditions that must be satisfied before execution and

who (agents) that should be contacted. However, it does not specify “when” the agent

should communicate with the others and what are the “constraints” of this communi-

cation process6. A concise specification of agents communication is critical since it
6SFP and FDR cannot be used as well because they do not have the notion of communication.

5.2. Choreography 139

1 a(single(K,A,Prov ,G),PID)::
2 null <- getFlaws(G,Flaws) then
3 null <- isEmpty(Flaws) or
4 (
5 null <- getAction(Flaws ,A,Act) then
6 (
7 (
8 null <- getPreconditions(Act,Pre) then
9 a(local(K,A,Prov ,Pre),PID) then

10 null <- execute(Act)
11)
12) then
13 a(single(K,A,Prov ,G),PID)
14).

Figure 5.7: The LCC interaction model of BSig execution for single agent system.

can affect the execution result e.g. ensuring that the global constraints are preserved

during execution.

On the other hand, Lightweight Coordination Calculus (LCC) [Robertson, 2005]

is a language based on a process algebra that has notations to concisely specify com-

munication protocols between agents. Since the execution of BSig models require the

communications between agents, then the remaining of this subsection will use LCC

to specify the regression algorithm implemented in the agents.

Regression Algorithm for Single Agent

Before describing the multiagent algorithm, first we describe the regression algorithm

for a single agent which is shown in figure 5.7. The algorithm is written as interaction

model (IM) single in Lightweight Coordination Calculus (LCC). This is because, later

in multiagent algorithm, we want to describe the communications (interactions) be-

tween the agents. Although there will be no interaction in this single agent algorithm,

but for the sake of consistency, it is also defined in LCC. Our algorithm is similar to

the one introduced in [Muise et al., 2011], but they are different on the method for

selecting the applicable action: ours is based on the causal-links only, while the other

is based on the partial ordering constraints.

Assume B = 〈κ, Â,prov,g〉 is the local BSig model which is going to be executed.

Since this only involves one agent, then the algorithm does not use prov because the

provider of every precondition is always the agent itself. The execution can be started

by passing the model’s elements as the following:

a(single(K, A, Prov, G), agent).

140 Chapter 5. Deploying Configuration Changes

where: K = κ, A = Â, Prov = prov, and G = g. The details of the algorithm can be

described as follows:

Line 1 K is the model’s serial number (κ), A is the set of local actions (Ai), Prov is the

agent precondition provider function (prov), G is the local goal (gi), and PID is

the process ID which can be set with agent’s ID.

Line 2 Constraint getFlaws will perform sensing to get the current state and then

compare it with the goal to compute and return the flaws (Flaws) that should be

repaired. This constraint always returns true.

Line 3 Constraint isEmpty returns true if the flaws is empty and then the execution

will finish successfully. Otherwise it returns false which triggers the execution

of lines 5-13.

Line 5 Constraint getAction is finding an action in A that can repair the flaws (see

definition 5.2). If the action is found, then it sets the action to variable Act and

then returns true. Otherwise, it returns false which will end the execution with

failure.

Line 8 Constraint getPreconditions will set the precondition of the selected action

Act to variable Pre. It always returns true.

Line 9 In order to satisfy the preconditions, a recursive call is made by passing Pre as

the new goal, while others (K, Prov, and A) are the same. Whenever the recursive

call is finish successfully then it continues to the next statement – this means that

Pre has been achieved. But, if it is failed, then the entire execution will end with

failure.

Line 10 Since the precondition has been achieved then action Act can be executed.

Constraint execute returns true if the execution was success, otherwise it returns

false which ends the entire execution with failure.

Line 13 A recursive call is made using the same goal to ensure that every goal has

been achieved because the previous action execution may only achieve the sub-

goal. If there is no flaw on the goal then the execution will end successfully.

The regression execution can be applied to the orchestration simply by implementing

this single agent algorithm into the controller agent.

5.2. Choreography 141

a(single(K, A, Prov, G1), PID)
 getFlaws(G1, Flaws1)
 getAction(Flaws1, A, Act1)
 getPreconditions(Act1, Pre1)

 execute(Act1)
a(single(K, A, Prov, G5), PID)
 getFlaws(G5, Flaws5)
 isEmpty(Flaws5).

a(single(K, A, Prov, G2), PID)
 getFlaws(G2, Flaws2)
 getAction(Flaws1, A, Act2)
 getPreconditions(Act2, Pre2)

 execute(Act2)
a(single(K, A, Prov, G4), PID)
 getFlaws(G4, Flaws4)
 isEmpty(Flaws4).

K = 10002
A = { cloud1.delete_vm(vm=vm1), cloud2.create_vm(vm=vm1) }
G1 = { cloud1.running=true, cloud2.running=true, vm1.in_cloud=cloud2 }
PID = agent

Flaws1 = { vm1.in_cloud=cloud2 }
Act1 = cloud2.create_vm(vm=vm1)
Pre1 = { cloud2.running=true, vm1.in_cloud=null }

G2 = Pre1
Flaws2 = { vm1.in_cloud=null }
Act2 = cloud1.delete_vm(vm=vm1)
Pre2 = { cloud1.running=true, vm1.in_cloud=cloud1 }

G3 = Pre2
Flaws3 = { }

G4 = Pre1
Flaws4 = { }

G5 = G1
Flaws5 = { }

agent:Agent

a(single(K, A, Prov, G3), PID)
 getFlaws(G3, Flaws3)
 isEmpty(Flaws3).

Figure 5.8: The sequence diagram of single agent BSig execution for the simple cloud

system. Gi and Flawi are the goal and flaws that should be achieved and repaired by

the agent. Acti is the action that will be executed, and Prei is the precondition of Acti

that should be satisfied before execution.

To show how the algorithm works, consider the simple cloud system described

in §5.2.1. The global plan for this system is shown in figure 5.5. Assume that all

resources are managed by a single agent. Hence, all actions and goals are in the local

BSig model of this agent.

The sequence of regression execution is illustrated in figure 5.8. It begins when

the model is passed to interaction model single. Based on the current state, a flaw

vm1.in_cloud=cloud2 (Flaws1) is found on the goal (G1). To repair the flaw, it then

performs two recursive calls. The first one is achieving the precondition vm1.in_cloud=null

(Pre1) of action cloud2.create_vm(vm=vm1) (Act1) that can repair the goal flaw

142 Chapter 5. Deploying Configuration Changes

(Flaws1). The second recursive is ensuring that the precondition (Pre2) of action

cloud1.delete_vm(vm=vm1) (Act2) is satisfied by the current state, which is then

executed to provide the precondition of cloud2.create_vm(vm=vm1) (Act1) which

is executed afterwards. Hence, the goal flaw has been repaired and the whole execu-

tion is finish successfully.

Regression Algorithm for Multi-Agents

The multi-agents regression algorithm extends the single agent version in three ways.

First, before executing an action, it classifies the preconditions into local or remote:

the local preconditions are achieved in similar way as the single agent algorithm that

is through a recursive call by passing the preconditions as the new goal; and the re-

mote preconditions are sent to the provider agents as specified in the local BSig model.

Second, every agent has a process that receives goal requests from other agents. The

requested goal is then achieved by finding its flaws and then executing the necessary

local actions to repair them. It sends an “ok” response if there is no flaw on the re-

quested goal, or when the flaw cannot be repaired then it will stop all processes and

trigger a re-choreographing by sending a request to the choreographer agent. Third, it

defines the internal process that periodically achieves the local goal in order to enable

the self-healing capability.

Figure 5.9 shows two interaction models i.e. local (lines 1-20) and remote (lines

22-32) that implement the first extension. Similar with single, IM local tries to achieve

given goal. On the other hand, IM remote requests the remote preconditions to all

provider agents concurrently. These two IMs can be described in details as follows:

Lines 1-5 These are equivalent with IM single where the agent computes the goal

flaws. If such flaws exist, then it selects an action (Act) that can repair them.

Lines 6-9 Constraint lock (line 7) is trying to lock the selected action (Act) before

execution. It is required to ensure an atomic action execution since there might

be multiple requests from different agents that can be achieved by the same ac-

tion7(the state of particular resource cannot be changed by two executions in the

same time). The constraint returns false if the action is already locked and then

the process will have to wait (line 8) for some times. It will restart the process

by re-invoking the same IM to achieve the same goal (line 19). If it can lock,

then the execution continues to lines 11-17.
7This behaviour can be implemented using a set of IMs, each of which is handling an action, and the

5.2. Choreography 143

1 a(local(K,A,Prov ,G),PID)::
2 null <- getFlaws(G,Flaws) then
3 null <- isEmpty(Flaws) or
4 (
5 null <- getAction(Flaws ,A,Act) then
6 (// try to lock action Act
7 null <- not lock(Act) then
8 null <- wait()
9)

10 or
11 (// LG: local preconditions, RG: remote preconditions
12 // RA: list of agents that provide RG
13 null <- classifyPreconditions(Act,Prov ,LG,RG,RA) then
14 a(local(K,A,Prov ,LG),PID) then
15 a(remote(K,RG,RA),PID) then
16 null <- execute(Act) and unlock(Act)
17)
18 then
19 a(local(K,A,Prov ,G),PID)
20).
21
22 a(remote(K,Goals ,Agents),PID)::
23 null <- isEmpty(Goals) or
24 (
25 null <- Agents = [AH|AT] and Goals = [GH|GT] then
26 (
27 goal(GH) => a(satisfier(K,_,_),AH) then
28 equals(S,ok) <- status(S) <= a(satisfier(K,_,_),AH)
29)
30 par
31 a(remote(K,GT,AT),PID)
32).

Figure 5.9: The local IM that finds and executes the necessary actions that can repair

the flaws of given goal. It calls itself recursively to achieve the local precondition, and

starts remote IM to send the remote preconditions to other agents concurrently.

Line 13 Constraint classifyPreconditions classifies the preconditions of action

Act into local LG and remote RG based on agent providers Prov. Note that RA

contains the list of agents that provide the remote preconditions.

Line 14 The local preconditions are achieved through recursive call by passing LG to

IM local as the new goal while other parameters (K, A, and Prov) are the same.

When the recursive call ends with failure, it stops all processes and triggers re-

choreographing. Otherwise, it continues to the next line.

Line 15 The remote preconditions are achieve by invoking IM remote and passing K,

lock is obtained by sending a message to this action IM.

144 Chapter 5. Deploying Configuration Changes

RG and RA as arguments. When this invocation ends successfully, it means every

remote preconditions have been achieved. Thus, it will continue to the next line

because. Otherwise, the execution ends with failure.

Line 16 Since local and remote preconditions have been achieved, the selected action

Act is then executed by calling constraint execute. If the execution is success,

the action will be unlocked. Then it invokes the same IM (line 19) with the same

goals in order to ensure that every goal has been achieved.

Line 22-32 These are IM remote that sends requests of remote preconditions to tar-

get agents concurrently. It splits the goal (line 25) for an agent, and then sends

the goal request (line 27). Whenever a response is received (line 28), it checks

whether the response is “ok” which means the request has been fulfilled. Other-

wise, it ends the execution with failure.

Figure 5.10 shows three IMs: satisfier (lines 16-29) that listens for any goal request

from other agent (the second extension); healer (lines 5-14) that periodically achieves

the local goal for self-healing (the third extension); and multi (lines 1-3) which is the

main IM.

IM multi is invoked by the agent after receiving the local BSig model from the

choreographer. Assume id is the agent’s identifier and B = 〈κ, Â,prov,g〉 is the local

model, then similar to the single agent algorithm, it starts the model execution by

passing every element as the follows:

a(multi(K, A, Prov, G), PID).

where: K = κ, A = Â, Prov = prov, G = g, and PID = id. The main process will be

split-up into two processes, one is invoking satisfier (line 2) and another is invoking

healer (line 3).

IM satisfier is invoked by passing the model’s serial number (K), the local actions

(A), and the agent providers (Prov). It then waits until it receives a message of goal

request (line 17) from other agents. It tries to achieve the goal by invoking IM lo-

cal (line 19). If it ends successfully, which means that the requested goal has been

achieved, then it sends an “ok” response (line 20) to the requester agent. However, if

it is failed, it sends a “failed” response (line 23), stops all processes (line 24), and trig-

gers re-choreographing. Note that after receiving a message, it spawns another thread

(lines 28-29) which duplicates itself in order to avoid blocking so that other requests

can be served concurrently.

5.2. Choreography 145

1 a(multi(K,A,Prov ,G),PID)::
2 a(satisfier(K,A,Prov),PID) par // listen for goal request
3 a(healer(K,A,Prov ,G),PID). // start self-healing
4
5 a(healer(K,A,Prov ,G),PID)::
6 (
7 (// try to achieve local goal
8 a(local(K,A,Prov ,G),PID) then
9 null <- sleep() // success; sleep until next cycle

10) or
11 null <- stop() // failure stop all processes, and
12 // then trigger re-choreographing
13) then
14 a(healer(K,A,Prov ,G),PID). // start next cycle
15
16 a(satisfier(K,A,Prov),PID1)::
17 goal(RG) <= a(remote(K,_,_),PID2) then
18 (// try to achieve requested goal (RG)
19 a(local(K,A,Prov ,RG),PID1) then
20 status(ok) => a(remote(K,_,_),PID2) // success
21 or
22 (// failure
23 status(failed) => a(remote(K,_,_),PID2) then
24 null <- stop() // stop all processes, and then
25 // trigger rechoreographing
26)
27)
28 par
29 a(satisfier(K,A,Prov),PID1). // listen another request

Figure 5.10: Multi is the main interaction model, satisfier is the interaction model for

receiving and achieving any goal request from other agent, and healer is the interaction

model for achieving the local goal (self-healing).

On the other hand, IM healer is invoked by passing every model’s element: the

model’s serial number (K), the local actions (A), the agent providers (Prov), and the

local goals (G). It starts by trying to achieve the local goal by invoking IM local (line

8). If it ends successfully, it sleeps (line 9) until the next cycle (line 14). On the other

hand, if it fails8, then it stops all processes and triggers re-choreographing (line 11).

These five IMs are parts of the multi-agents execution algorithm. Figure 5.11 illus-

trates the agent transitions between these IMs during execution.

8Whenever the agent fails to achieve a local or requested goal, this means that the model is invalid
due to some reasons e.g. no action can provide the goal. Thus, the execution process must be stopped
so that a new model can be re-choreographed.

146 Chapter 5. Deploying Configuration Changes

satisfiersatisfierhealer satisfier

local

remote

local

remote

multi

messagemessage

message

Figure 5.11: The agent transitions between interaction model multi, healer, satisfier,

local, and remote when it executes the multi-agents regression algorithm.

5.2.
C

horeography
147

local (wait)

local (wait)

remote

local

local (wait)

local

pc1:Agent

goal(pc1.refer=s2.web)

status(ok)

goal(pc2.refer=s2.web)

s2:Agent

goal(s2.web.running=true})

goal(s2.web.running=true})

execute(s2.web.start())

status(ok)

status(ok)

execute(pc1.redirect(s=s2.web)) execute(pc2.redirect(s=s2.web))

status(ok)

K = 10001
A1 = { s1.web.stop() }
Prov1 = { s1.web.stop: { s1.web.running: s1,
 pc1.refer: pc1, pc2.refer: pc2 } }
G1 = { s1.web.running = false,
 s1.dns: “ns.foo” }

a(multi(K,A1,Prov1,G1),s1)

healersatisfier

s1:Agent

a(multi(K,A2,Prov2,G2),pc1)

satisfier healer

local (wait)

pc2:Agent

satisfier healer

local

satisfier healer

remote

remote

local

remote

a(multi(K,A3,Prov3,G3),pc1) a(multi(K,A4,Prov4,G4),pc1)

execute(s1.web.stop())

K = 10001
A2 = { pc1.redirect(s=s1.web) }
Prov2 = { pc1.redirect:
 { s1.web.running: s1 } }
G2 = { pc1.refer = s1.web }

K = 10001
A3 = { pc2.redirect(s=s2.web) }
Prov3 = { pc2.redirect:
 { s2.web.running: s2 } }
G3 = { pc2.refer = s2.web }

K = 10001
A4 = { s2.web.start() }
Prov4 = { s2.web.start: { s2.web.running: s2 } }
G4 = { s2.web.running = true,
 s2.dns = “ns.foo” }

Figure 5.12: Example: multi-services system – the interaction diagram of agents when executing the BSig models based on the plan depicted

in figure 5.4.

148 Chapter 5. Deploying Configuration Changes

Example 1: Multi-Services System

Consider the example multi-services system in §3.3 whose global plan is depicted

in figure 5.4. Figure 5.12 illustrates the interactions between the agents during the

execution of the BSig models. Every agent starts the execution by invoking IM multi.

It then spawns two processes, one is invoking IM satisfier and another is invoking IM

healer.

For agent s1, its healer process tries to repair the flaw of its local goal i.e.

s1.web.running=false. However, since action s1.web.stop() has two remote pre-

conditions i.e. pc1.refer=s2.web and pc2.refer=s2.web, it sends the goal requests

to agent pc1 and pc2 respectively.

For agent pc1, its healer process wants to repair the flaw of its local goal i.e.

pc1.refer=s2.web by selecting and locking action pc1.redirect(s=s2.web). But

before execution, it invokes IM remote to request a remote precondition

s2.web.running=true to agent s2, and then wait its response. On the other side, its

satisfier process receives a requested goal pc1.refer=s2.web from s1. However, this

process must wait since action pc1.redirect(s=s2.web) is being locked by healer

process.

A similar situation is happening in agent pc2 where its healer process requests

a remote precondition s2.web.running=true to agent s2, which is required before

executing action pc2.redirect(s=s2.web). Its satisfier process receives a requested

goal pc2.refer=s2.web from agent s1.

For agent s2, its healer process tries to repair a local goal flaw s2.web.running=true

by selecting action s2.web.start(). However, before execution, it invokes IM lo-

cal and remote to ensure all preconditions have been satisfied. Afterwards, it exe-

cutes the action. On the other side, its satisfier process receives two same requests

(s2.web.running=true) from pc1 and pc2. It has to wait since the supporting action

is being locked by the healer process. When the execution has finished, hence the

requested goal has been achieved, it then sends “ok” responses to pc1 and pc2.

Afterwards, agent pc1 and pc2 receive an “ok” response from s2. And then they

continue executing the selected actions i.e. pc1.redirect(s=s2.web) and

pc2.redirect(s=s2.web), which repair their local goal flaw as well as achieve the

requested goals from s1. Thus, their satisfier process send an “ok” response back to

s1.

Finally, agent s1 receives an “ok” response from pc1 and pc2. Since all precon-

5.2. Choreography 149

ditions have been satisfied, it then continues by executing action s1.web.stop() that

repair its local goal flaw. This concludes the result where all agents have achieved their

local goals.

Example 2: Simple Cloud System

local

local

cloud1:Agent

goal(vm1.in_cloud=null)

status(ok)

goal(vm1.in_cloud=cloud1)

K = 10002
A3 = { cloud2.create_vm(vm=vm1) }
Prov3 = { cloud2.create_vm: {
 cloud2.running: cloud2 },
 vm1.in_cloud: cloud1 } }
G3 = { cloud2.running=true,
 vm1.in_cloud = cloud2 }

a(multi(K,A3,Prov3,G3),cloud2)

healersatisfier

cloud2:Agent

a(multi(K,A2,Prov2,G2),cloud1)

satisfier healer

local

vm1:Agent

satisfier healer

remote

a(multi(K,A1,Prov1,G1),vm1)

remote

status(ok)

execute(cloud1.delete_vm(vm=vm1))

execute(cloud2.create_vm(vm=vm1))

K = 10002
A2 = { cloud1.delete_vm(vm=vm1) }
Prov2 = { cloud1.delete_vm: {
 cloud1.running: cloud1 },
 vm1.in_cloud: vm1 } }
G2 = { cloud1.running=true }

K = 10002
A3 = { }
Prov3 = { }
G3 = { }

Figure 5.13: Example: simple cloud system – the interaction diagram of agents when

executing the BSig models based on the plan depicted in figure 5.5.

Consider the example simple cloud system in §5.2.1 whose global plan is given in

figure 5.5. Figure 5.13 shows the interaction diagram of the agents when executing

the BSig models. Similar with the previous example, the execution is started when

the agents are invoking IM multi, each of which then spawns two processes, one is

invoking IM satisfier and another is invoking IM healer.

For agent cloud2, it finds local goal flaw vm1.in_cloud=cloud2 and then selects

action cloud2.create_vm(vm=vm1) that can repair it. But before execution, it sends

the action’s remote precondition vm1.in_cloud=null to agent cloud1 as defined in

the model’s agent providers.

For agent cloud1, its healer process does not find any flaw on its local goal. But

its satisfier process receives goal request vm1.in_cloud=null from cloud2, and then

150 Chapter 5. Deploying Configuration Changes

tries to achieve it by selecting action cloud1.delete_vm(vm=vm1). However, it sends

the action’s remote precondition vm1.in_cloud=cloud1 to agent vm1 in order to en-

sure that all preconditions have been satisfied.

The healer process of agent vm1 does not have any flaw on its local goal. On

the other hand, its satisfier process receives goal request vm1.in_cloud=cloud1 from

cloud1. Since the current state satisfies the goal request, it sends back “ok” response.

After receiving “ok” response from vm1, agent cloud1 is then executing action

cloud1.delete_vm(vm=vm1) since all preconditions have been satisfied. Afterwards,

it sends an “ok” response back to agent cloud2.

Since agent cloud2 receives “ok” response from cloud1, it then continues by ex-

ecuting action cloud2.create_vm(vm=vm1). This repairs its goal flaw and concludes

the whole execution.

5.2.4 Correctness

The main advantage of using a planner is that it can generate a plan which not only

achieves the goal, but the plan itself is guaranteed to be deadlock and livelock free due

to its acyclic ordering constraints. Thus, either the choreographing or the execution

algorithm must preserve these constraints so that the same properties can be maintained

during execution. We define two correctness properties of our choreography technique.

First is the soundness of the action selection in order to ensure that the goal will be

achieved. Second is guaranteeing that deadlock or livelock situation will never be

occurred.

Theorem 5.3. The action selection in the multi-agents regression execution algorithm

is sound.

Proof. The action selection is sound since the execution algorithm uses the rule in

definition 5.2 to select the action. Based on the causal-links, the rule selects an action

only if the action’s effects provides the goal, and it never selects an action whose effects

do not provide the goal.

Theorem 5.4. Assume M = 〈A ,B〉 is the global BSig model generated by the chore-

ographing algorithm 5.2. If M is executed using the multi-agents regression execution

algorithm then the agents will never reach any deadlock or livelock situation.

Sketch of Proof. The essence of the proof is based on an assumption that the planner

generates a partial-order plan π = 〈Â,≺〉 where ≺ is acyclic. Then, it must be shown

5.2. Choreography 151

that the execution of the BSig model constructed from π will preserve ≺.

The choreographing algorithm 5.2 shows that the partial-order plan π, which is

used to construct M , is generated by the modified partial-order generator algorithm

5.1. The algorithms adds âi ≺ â j iff the effects of âi supports the preconditions of â j

(causal-link), or the effects of â j threats the preconditions of âi (threat-resolution). It

also adds the effects of âi into the preconditions of â j (extra preconditions) iff (âi ≺
â j) ∈≺ and â j threats âi.

By contradiction, assume that the execution is not preserving ≺ i.e. there is such

situation where (âi ≺ â j) ∈≺ and â j is executed before âi. However, this will never be

occurred because of two reasons. First, the execution algorithm always finds and re-

pairs every flaw on the preconditions before executing the action by executing another

action that can repair the flaws. This behaviour always satisfies the ordering constraint

based on the causal-links. Second, since the effects of âi are the preconditions of â j,

then the effects become the flaws. Thus, the algorithm will always execute âi first since

it has to repair the flaws before executing â j.

Since it has been shown that such situation will never be occurred then the ex-

ecution is always preserving ≺. Thus, there will be no deadlock or livelock during

execution.

5.2.5 Progression Execution with Idempotent Actions

Some configuration tools, such as Ansible [Ansible Inc., 2014] and Chef [Opscode

Inc., 2014], are relying on a script containing a workflow (plan) with idempotent ac-

tions to enable the self-healing capability, where the script is executed progressively

and periodically. The idempotent action is a concept where the action leaves the sys-

tem unmodified if it is already at the desired state. This behaviour can be formally

described using conditional effects. Assume we have a “normal” action a where:

Preconditions(a) = ψ and Effects(a) = φ

a can be converted into idempotent action a′ such that:

Preconditions(a′) = true and Effects(a′) = (when ψ∧¬φ then φ)

Note that the action is always executable since the preconditions is always true, while

the effects are applied when its conditions are satisfied by the current state.

Naively, we could convert the plan’s actions into idempotent ones and execute them

152 Chapter 5. Deploying Configuration Changes

in progression, and then expect that the results will be same as our regression tech-

nique. However, although both could achieve the desired state, but the state transitions

are not the same – the first might employ unnecessary changes, while the latter will not.

These unnecessary changes might produce undesired behaviours during execution.

For illustration, consider a simple example of configuration task where we want to

upgrade a running service s. The task can be described as follows:

initial state: goal: action: s.start
s.running=true s.running=true pre: s.running=false
s.version=1 s.version=2 eff: s.running=true

action: s.stop action: s.upgrade
pre: s.running=true pre: s.running=false ∧ s.version=1
eff: s.running=false eff: s.version=2

The solution plan for this task is: s.stop→ s.upgrade→ s.start.

The plan’s actions could be converted into idempotent ones which can be described

as follows:

action: s.start
pre:
eff: when (s.running=false) then (s.running=true)
action: s.stop

pre:
eff: when (s.running=true) then (s.running=false)
action: s.upgrade

pre:
eff: when (s.running=false ∧ s.version=1) then (s.version=2)

If the service is at the initial state and the plan with idempotent actions is executed

progressively, then we will get state transitions:

{s.running=true, s.version=1}→ {s.running=false, s.version=1}→
{s.running=false, s.version=2}→ {s.running=true, s.version=2}

Obviously, this execution can achieve the desired state. However, if the tool executes

the same plan in the next cycle, for example when the service is currently at the final

state, then the same state transitions will be occurred again during execution. This is

clearly not a desired behaviour – indeed, the service will be stopped and then started

again in every execution.

On the other hand, if the (original) solution plan is executed using our regression

5.2. Choreography 153

execution, then the above state transitions will only be happened when the service is at

the initial state of the plan. If the service is already at the final state, our algorithm will

not make any change since the goal has been achieved.

5.2.6 Discovery Service

The discovery service plays a small but critical part in our choreography technique:

it is only used to resolve the actual IP address and port number of particular agent’s

identifier. This address can be statically assigned by declaring the address and port

explicitly in the specification, or could be dynamic, for example the IP address of an

agent which controls a virtual machine (VM) will be assigned after the VM has been

created, but not beforehand.

The previous simple cloud system is an example of the dynamic address resolution.

Agent vm1 might have a different IP address before and after migration between the

two cloud infrastructures. If these clouds are managed by a single authority, then the

address could be the same. However, if they are managed by two different authorities

with different policies, then the address will be different9. Thus, the record in the

discovery service should be updated after the migration has finished.

There are two approaches to implement the discovery service. First is centralised

where the discovery service is running as an independent entity separately from the

managed system. Although this could become a single point of failure, but we could

have a set of discovery service instances in order to increase the robustness. The Do-

main Name System (DNS) service is a perfect example of this.

Second is fully distributed where every agent has an agents database to keep and

resolve any identifier. The database is a simple key-value map where the agent’s identi-

fier is the key and the agent’s IP address/port is the value. Every change on the agent’s

IP address are broadcasted to other agents. Whenever the agent receives such broad-

cast, then it will update the database by adding, removing, or altering the records.

This technique is extremely lightweight and easily integrated into the agent runtime

system. An alternative of this could be using a different technology such as Apache

Zookeeper[Foundation, 2014b].

9In practice, two authorities (e.g. companies) may use different subnetworks – for the public network
connected to the internet, two companies must not have the same subnetwork. Whenever a virtual
machine is migrated between two companies, then a new IP address may need to be assigned so the
machine can work properly within the new subnetwork.

154 Chapter 5. Deploying Configuration Changes

5.2.7 Extending the Model

A limitation of our choreography technique is that it only constructs the BSig models

from a single plan. This limits the number of possible current states which are covered

by the existing models. In addition, since the model only has a single plan to a single

goal, then the agents do not have any alternative plan to the goal, or alternative goal

in case the execution is failed. Perhaps, a solution for this problem is plans merging

where multiples plans to a single goal are merged into a single model. We leave this as

part of the future works.

5.3 Summary

As summary, the first section describes how a planner can be integrated into an or-

chestration architecture to enable a close-loop control for unattended and self-healing

system. It also gives the agent’s architecture that clearly separates the configuration

and the implementation. This makes the configuration becomes platform independent

where multiple implementations in different platforms can work together seamlessly.

In the second section, a novel deployment technique called as choreography is in-

troduced. The technique automatically constructs a set of reactive agents which chore-

ograph the deployment of configuration changes without the need of central controller.

By executing the persistent models using cooperative regression reactive (CRR) algo-

rithm, the agents can form a self-healing system that can correct particular drifts from

the desired state.

Chapter 6

Evaluation

This chapter presents evaluations of works that are described in the previous chapters.

In the first section, the formal semantics of the SmartFrog (SF) language is evaluated

by creating a compiler purely based on the semantics. The compiler was then used to

compile some artificial specifications that contain edge cases, and specifications which

are available in the distribution package of the SF production compiler. Its outputs

were compared with the outputs of the SF production compiler.

The second section presents the evaluation of the performance of a domain inde-

pendent compilation technique described in §4.1 for solving planning problems with

extended goals. It measures the planning times and the planning coverage, and uses

the MIPS-XXL [Edelkamp et al., 2006] planner as comparison.

In the third section, the technique described in §4.2 for generating the workflows

of configuration tasks is evaluated using various configurations of typical systems in

the cloud environment. The planning times and the planning coverage are presented

for each use-case, and they are compared with MIPS-XXL planner.

The last section presents the Nuri configuration tool that: uses SFP language to de-

fine the configuration specification; has a planner to automatically generate the work-

flow; and implements the choreography to deploy the configuration changes. For eval-

uation, Nuri was used to deploy or reconfigure three real systems: Apache Hadoop,

HP IDOLoop, and 3-tier web applications system, in the cloud environment.

155

156 Chapter 6. Evaluation

6.1 Formal Semantics of SmartFrog Language

For evaluating SF semantics, we were able to translate fairly directly the formal se-

mantics defined in §3.2 into a reference implementation using functional programming

language Scala [sca, 2014], which is available as an open source software at:

http://github.com/herry13/smartfrog-lang

On the other hand, the semantics has also been independently implemented into

two further compilers, purely from the semantics, and using different programming

languages. One is implemented by the author using OCaml [oca, 2014], and another

is implemented by Paul Anderson using Haskell [has, 2014]. Both are also available

in the above repository. These are proving that the semantics is highly consistent and

unambiguous, validating that it acts as a precise, independent reference for developers.

For further evaluation, we designed two experiments which aim to prove that the

semantics with regards to the supported features, produces outputs that are equivalent

to the production compiler. Note that we were using the production compiler ver-

sion 3.18.016 which is available at the SmartFrog’s website [HP Labs, 2014]. The

first experiment was using artificial specifications which represent edge use cases, in

particular for evaluating link reference resolution. The second experiment was using

specifications of an example system which are available in the SmartFrog software

distribution package.

For each experiment, the specifications were compiled using the production and

our compilers. Afterwards, the outputs were then compared using diff program to

find any difference. Note that the production compiler produces an output in the plain

SmartFrog language representation, which is a specification without any prototype and

link reference. Thus, we have implemented a helper function in our compilers that

produces the same output to ease the comparison process.

6.1.1 Link Reference Resolution

This experiment is for evaluating the behaviour of link reference resolution. It used

two specifications shown in figure 6.1 created by Patrick Goldsack. The specifications

are compact, but they use almost all key features of the semantics such as the main

component (sfConfig), prototypes and (forward) link references. Although they look

different, but actually they are equivalent. This means that the compilation outputs

6.1. Formal Semantics of SmartFrog Language 157

1 A extends { foo bar; }
2 sfConfig extends {
3 test extends {
4 bar 1;
5 a1 extends A
6 }
7 bar 2;
8 a2 test:a1;
9 }

(a)

1 A extends { foo bar; }
2 sfConfig extends {
3 bar 2;
4 a2 test:a1;
5 test extends {
6 bar 1;
7 a1 extends A
8 }
9 }

(b)

Figure 6.1: Two equivalent specifications with different orders of statements.

1 test extends {
2 bar 1;
3 a1 extends {
4 foo 1;
5 }
6 }
7 bar 2;
8 a2 extends {
9 foo 1;

10 }

(a)

1 test extends {
2 bar 1;
3 a1 extends {
4 foo 1;
5 }
6 }
7 bar 2;
8 a2 extends {
9 foo 1;

10 }

(b)

Figure 6.2: The outputs of the first specification (figure 6.1a) using (a) the production

compiler and (b) our compiler.

1 bar 2;
2 a2 extends {
3 foo 1;
4 }
5 test extends {
6 bar 1;
7 a1 extends {
8 foo 1;
9 }

10 }

(a)

1 bar 2;
2 a2 extends {
3 foo 1;
4 }
5 test extends {
6 bar 1;
7 a1 extends {
8 foo 1;
9 }

10 }

(b)

Figure 6.3: The outputs of the second specification (figure 6.1b) using (a) the production

compiler and (b) our compiler.

should be the same regardless of the choice of the compiler as well as the input speci-

fication.

158 Chapter 6. Evaluation

The first specification (figure 6.1a) has a component (line 1) that has an attribute

with a link reference value. It is used as the prototype of another component (line 5).

Lines 2-9 define the main component which has three attributes (test, bar and a2),

where the last one (line 8) has a value of link reference (test:a1) that refers another

component’s attribute defined in line 5.

The second specification (figure 6.1b) has the same statements but their orders are

different – lines 7-8 of the first specification are moved to lines 3-4 in the second

specification. This change of order should not affect the output since forward link

references are supported by the semantics.

There are two critical values that test the resolving of link references. First, the

link reference value of attribute foo of component A (line 1) should not be resolved

since it is defined outside of the main component. Second, the final value of attribute

a1:foo should be equal to 1, not 2. This is because the link reference value (bar),

which is indirectly inherited from A through test:a1, should be resolved within the

source component which test:a1 and not within the target component. If the later is

being used then the final value of a1:foo will be 2.

The compilation outputs of the first specification are shown in figure 6.2, where

the left one (figure 6.2a) was produced by the production compiler and the right one

(figure 6.2b) was produced by our compiler. Other outputs of the compilation of the

second specification are shown in figure 6.3, where the left (figure 6.3a) and the right

(figure 6.3b) were produced by the production and our compilers respectively. You

may notice that all outputs are identical including the orders of attribute names, which

means that the semantics has an equivalent behaviour with the production compiler.

6.1.2 Specifications in the SmartFrog Distribution Package

This experiment is using a set of configuration specification files of example system

which are available in the SmartFrog distribution package. However, since the se-

mantics are only supporting the subset features of the production compiler, we then

manually selected the files which are not using unsupported features such as functions

and predicates. These selected, unmodified main specification files are shown in figure

6.4.

Each specification file describes the configuration of an example system. It con-

tains not only the definition of the main component, but also file inclusion statements.

Each of the included file contains a set of prototypes which are required by the main

6.1. Formal Semantics of SmartFrog Language 159

No. File Lines Size (Bytes)

1 org/smartfrog/examples/helloworld/example1.sf 49 1445

2 org/smartfrog/examples/helloworld/example1a.sf 37 1254

3 org/smartfrog/examples/helloworld/example1b.sf 37 1264

4 org/smartfrog/examples/helloworld/example1c.sf 36 1259

5 org/smartfrog/examples/helloworld/example1dist.sf 47 1410

6 org/smartfrog/examples/helloworld/example2.sf 43 1376

7 org/smartfrog/examples/helloworld/example3.sf 40 1271

8 org/smartfrog/examples/helloworld/example4.sf 64 1928

9 org/smartfrog/examples/helloworld/example5.sf 64 2102

10 org/smartfrog/examples/arithnet/example1.sf 52 1757

11 org/smartfrog/examples/arithnet/example2.sf 59 1930

12 org/smartfrog/examples/arithnet/example3.sf 99 3418

Figure 6.4: List of specification files from the SmartFrog distribution package which are

used in the experiments.

No. File Lines Size (Bytes)

1 org/smartfrog/components.sf 27 1041

2 org/smartfrog/examples/helloworld/printer.sf 30 1094

3 org/smartfrog/examples/helloworld/generator.sf 39 1408

4 org/smartfrog/functions.sf 293 7100

5 org/smartfrog/predicates.sf 127 3198

6 org/smartfrog/sfcore/prim/prim.sf 90 3947

7 org/smartfrog/sfcore/compound/compound.sf 36 1272

8 org/smartfrog/sfcore/workflow/combinators/detachingcompound.sf 40 1681

9 org/smartfrog/examples/arithnet/netComponents.sf 103 2756

Figure 6.5: List of included specification files from the SmartFrog distributed package.

specification. Both the production and our compilers parses the main and included files

in order to produce the final description. These included files are shown in figure 6.5

Due to copyright issue, we do not include the source code of the specification files

in this thesis. The reader is advised to download the files directly from [HP Labs,

2014]:

http://sourceforge.net/p/smartfrog/svn/HEAD/tree/trunk/core/smartfrog/src/

Every main specification file was compiled with the production and our compiler,

and the outputs were then directly compared with diff program to detect differences.

For example, the following is the output generated our compiler when file #8 (in figure

6.4) is given as the input:

160 Chapter 6. Evaluation

1 sfCodeBase "default";
2 sfClass "org.smartfrog.sfcore.workflow.combinators.DetachingCompoundImpl";
3 detachDownwards true;
4 detachUpwards true;
5 autoDestruct true;
6 pair1 extends {
7 sfCodeBase "default";
8 sfClass "org.smartfrog.sfcore.compound.CompoundImpl";
9 messages ["hello", "world", "again"];

10 frequency 10;
11 g extends {
12 sfCodeBase "default";
13 sfClass "org.smartfrog.examples.helloworld.GeneratorImpl";
14 frequency 10;
15 messages ["hello", "world", "again"];
16 printer LAZY p;
17 }
18 p extends {
19 sfCodeBase "default";
20 sfClass "org.smartfrog.examples.helloworld.PrinterImpl";
21 }
22 }
23 pair2 extends {
24 sfCodeBase "default";
25 sfClass "org.smartfrog.sfcore.compound.CompoundImpl";
26 messages ["this is a", "boring", "set of strings"];
27 frequency 5;
28 g extends {
29 sfCodeBase "default";
30 sfClass "org.smartfrog.examples.helloworld.GeneratorImpl";
31 frequency 5;
32 messages ["this is a", "boring", "set of strings"];
33 printer LAZY p;
34 }
35 p extends {
36 sfCodeBase "default";
37 sfClass "org.smartfrog.examples.helloworld.PrinterImpl";
38 }
39 }

Using the same file, the production compiler generated the following output:

1 sfCodeBase "default";
2 sfClass "org.smartfrog.sfcore.workflow.combinators.DetachingCompoundImpl";
3 detachDownwards true;
4 detachUpwards true;
5 autoDestruct true;
6 pair1 extends {
7 sfCodeBase "default";
8 sfClass "org.smartfrog.sfcore.compound.CompoundImpl";
9 messages [|"hello", "world", "again"|];

10 frequency 10;
11 g extends {
12 sfCodeBase "default";
13 sfClass "org.smartfrog.examples.helloworld.GeneratorImpl";

6.1. Formal Semantics of SmartFrog Language 161

14 frequency 10;
15 messages [|"hello", "world", "again"|];
16 printer LAZY p;
17 }
18 p extends {
19 sfCodeBase "default";
20 sfClass "org.smartfrog.examples.helloworld.PrinterImpl";
21 }
22 }
23 pair2 extends {
24 sfCodeBase "default";
25 sfClass "org.smartfrog.sfcore.compound.CompoundImpl";
26 messages [|"this is a", "boring", "set of strings"|];
27 frequency 5;
28 g extends {
29 sfCodeBase "default";
30 sfClass "org.smartfrog.examples.helloworld.GeneratorImpl";
31 frequency 5;
32 messages [|"this is a", "boring", "set of strings"|];
33 printer LAZY p;
34 }
35 p extends {
36 sfCodeBase "default";
37 sfClass "org.smartfrog.examples.helloworld.PrinterImpl";
38 }
39 }

Notice that the above outputs are identical.

We did the same process for other files and automatically compare the outputs

using diff. Based on the results, diff cannot find any difference between the output

produced by our compiler with the output produced by the production compiler. This

proves that the semantics with regards to the supported features, produces outputs that

are equivalent to the production compiler. All outputs of both compilers can be found

in:

https://github.com/herry13/smartfrog-lang/tree/thesis/test/sf-dist/

162 Chapter 6. Evaluation

6.2 Planning with Extended Goal

These experiments aim to measure the performance of our compilation technique for

solving planning problems with extended goals1. The performance is measured using

two metrics: the required time to solve the problem (planning time), and the number

of problems that can be solved within given deadline (planning coverage).

6.2.1 Design of Experiments

The experiments used three problem domains from the 5th International Planning

Competition (IPC-5) which are Openstacks, Rovers and Storage. Each domain consists

of 20 problems defined in PDDL, each of which contain not only the hard extended

goals, but also the soft ones (preferences).

The experiments used three problem domains from the 5th International Planning

Competition (IPC-5) which are Openstacks, Rovers and Storage. Each domain consists

of 20 problems defined in PDDL, each of which contain not only the hard extended

goals, but also the soft ones (preferences). A hard goal is a strict goal that must be

achieved by a plan. On the other hand, a plan may not achieve a soft goal, but this will

decrease the quality of the plan.

Since our work is only focusing on the hard extended goals, then a script was

used for randomly selecting and converting the soft extended goals to hard ones. The

script performed random selection 100 times for each problem. Because there are

20 problems for each domain, then after random selection, the script generated 2000

problems which are grouped into 20 datasets based on their original problem – each

dataset has 100 problems. It is possible that there is no solution plan for the generated

problem since the randomly selected soft goals may conflict with each other.

We implemented the compilation technique described in §4.1 into FastDownward2

[Helmert, 2006] planner by modifying its PDDL-to-FDR translator component3, which

is then called as FDT. We selected hFF [Hoffmann and Nebel, 2001] as the heuristic

technique of FDT. For comparison, we chosed MIPS-XXL [Edelkamp and Jabbar,

2008] planner which is a participant of IPC-5. Note that MIPS-XXL is using hFF for

calculating the heuristics.

1The evaluation using problems from system configuration domain will be presented in §6.3.
2The original FastDownward planner does not support extended goals.
3The FastDownward planner consists of three components: the PDDL-to-FDR translator, the pre-

processor, and the search engine.

6.2. Planning with Extended Goal 163

All planners were using the same configurations. Every experiment was running

on a server with Intel Xeon CPU 16 cores, 2.6 GHz for each core, 48 GB of memory,

and Linux operating system. However, every planner was set to only use one CPU core

and maximum 24 GB of memory. For every problem, the planner was given maximum

of 30 minutes to solve it. Every run will result in solved4 or unsolved5. Every plan

generated either by FDT or MIPS-XXL was checked using VAL [Howey et al., 2004],

which is the standard plan validator software for PDDL planning problem. If the plan

is invalid, then the planner is assumed to have failed in finding the solution plan.

6.2.2 Problem Domains

The following paragraphs describe the problem domains.

Openstacks The Openstacks domain is based on the minimum maximum open stacks

combinatorial optimisation problem. The domain states a scenario where a manufac-

turer has to make products based on a number of orders, each of which is for a com-

bination of different types of products. The production activities are constrained by

a condition where the production process is sequential – only one product can be fin-

ished at a single production batch. An order is said to be “open” if all products have

not been delivered, and it will require a “stack” at particular step to store the finished

products and wait until all types of product have been produced by the next production

batch. The problem is to arrange the making of different products such that the maxi-

mum number of stacks that are being used simultaneously is minimised. Examples of

extended goals that can be found in this domain are: the number of orders/products that

should be delivered; a set of stacks that should not be used during production process.

Rovers The Rovers domain models the planning of activities of one or more au-

tonomous rovers for exploring a planet to obtain material samples such as rocks or

soils from particular waypoints, or to capture images of some objects. The problems

contain various hard and soft extended goals, for examples: the samples must be ob-

tained within a particular order; every rover has a limited sample storage capacity and

can only visit a limited number of areas.

4The plan is found, or the planner stated that there is no solution plan.
5It is timeout (the planner exceeds 30 minutes deadline), out of memory, or invalid plan.

164 Chapter 6. Evaluation

Storage The Storage domain models a typical transportation problem involving ac-

tivities to move items from one to another place using particular equipment. The items

are crates in containers, and one or more hoists can be used to move them to storage

spaces (depots). The problems are similar with puzzle games (e.g. Sokoban) where

the depot is divided into several areas. The movements of the hoist is restricted in the

depot where it can only move between adjacent areas, and can only enter and leave

the depot from/to particular area. The containers are located outside the depot where

the hoist can move unrestricted. The examples of the extended goals are: some crates

must be stored in particular area and/or within particular order; some crates can only

be lifted using particular hoist.

6.2.3 Results and Analysis

6.2.3.1 Openstacks

The total number of solved Openstacks problems based on the planning time of the

planners are illustrated in figure 6.6. The dark-grey line is representing FDT, while

the light-grey line is representing MIPS-XXL. After 30 minutes, FDT solved 1776

problems, which are 285 more than MIPS-XXL that solved 1491 problems.

Figure 6.7 shows the number of solved problems for each dataset. It shows that

FDT outperformed MIPS-XXL on every dataset. Interesting results are shown in

dataset p19 and p20 where MIPS-XXL did not solve any problem - FDT solved 81

and 74 problems for p19 and p20 respectively. The log files showed that MIPS-XXL

exited unexpectedly due to some internal errors when trying to solve the problems

of these two datasets. Unfortunately, we cannot find a solution to address the errors.

Thus, from 509 unsolved problems, 200 of them were caused by these errors while 309

were caused by time out. On the other side, FDT cannot solve 224 problems because

of time out.

Figure 6.8 shows the minimum, the maximum and the average planning time of

FDT and MIPS-XXL based on the problems solved by both planners. The problems

which were not solved by both planners are excluded – there is no data for dataset p19

and p20 because MIPS-XXL did not solve any problem in these datasets. FDT has a

better average planning time in every dataset where the differences are between about

0.5-13 seconds. FDT also has a better maximum planning almost on every dataset

except p13 and p15.

Clearly, the figures show that FDT has a better overall performance either in plan-

6.2. Planning with Extended Goal 165

ning time or coverage comparing to MIPS-XXL. This fact is shown in figure 6.6 where

about 1400 problems were solved by FDT within the first 10 seconds, while MIPS-

XXL required 60 seconds to reach that numbers. On the other hand, FDT has a better

planning coverage where it solved 19 percent more problems than MIPS-XXL within

30 minutes.

●

●

●

●

●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●

●●

0 100 200 300 400 500 600 700 800 900 1050 1200 1350 1500 1650 1800

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Planning Time (in seconds)

To
ta

l S
ol

ve
d

P
ro

bl
em

s

● fdt
mips−xxl

Figure 6.6: The accumulated number of solved problems for Openstacks domain based

on planning time FDT (dark-grey) and MIPS-XXL (light-grey). The total number of prob-

lems is 2000 (20 datasets, each of which has 100 problems). A higher line means that

the planner can solve more problems in shorter time than another.

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Dataset

To
ta

l S
ol

ve
d

P
ro

bl
em

s

0

20

40

60

80

100

fdt
mips−xxl

100
97

10099
96

88
94

85
91

80

96
92 93

81

94

87
91

84

96

87
90

86
90

82

63
59

80

72

92

82
87

78

86
81 82

71

81

0

74

0

Figure 6.7: The number of solved problem per dataset for Openstacks domain using

FDT (dark-grey) and MIPS-XXL (light-grey). There are 20 datasets i.e. p01-p20, each

of which has 100 problems. Each dataset differs from the others on the number of

products/orders that should be delivered and the number of stacks that can be used

during production.

166 Chapter 6. Evaluation

Dataset
Solved by Both FDT MIPS-XXL

(Total Problems) Min(s) Avg(s) Max(s) Min(s) Avg(s) Max(s)

p01 97 (100) 0.17 0.25 1.95 0.05 0.75 48.93

p02 99 (100) 0.17 0.29 1.91 0.05 1.35 53.6

p03 88 (100) 0.31 2.15 91.26 0.14 4.73 117.3

p04 85 (100) 0.33 1.53 22.04 0.12 6.67 118.69

p05 80 (100) 0.44 1.39 26.12 0.23 3.77 101.67

p06 92 (100) 0.42 2.13 45.31 0.24 6.77 187.35

p07 81 (100) 0.46 1.99 33.1 0.2 3.94 80.22

p08 87 (100) 0.4 3.14 49.66 0.21 10.74 159.06

p09 84 (100) 0.43 4.65 131.04 0.2 8.84 242.89

p10 87 (100) 0.41 2.12 52.67 0.2 9.28 279.79

p11 86 (100) 0.46 2.07 48.42 0.19 7.48 276.46

p12 82 (100) 0.5 2.43 49.65 0.23 6.62 183.4

p13 55 (100) 0.69 27.04 792.6 0.44 29.66 236.78

p14 72 (100) 0.6 4.1 75.74 0.35 12.08 289.57

p15 82 (100) 0.89 5.87 210.98 0.53 8.66 197.25

p16 78 (100) 0.78 5.72 179.71 0.52 18.03 250.78

p17 81 (100) 0.76 2.15 21.68 0.52 8.42 154.2

p18 70 (100) 0.92 3.17 50.58 0.52 6.41 116.92

p19 0 (100) - - - - - -

p20 0 (100) - - - - - -

1486 0.17 3.48 792.6 0.05 7.98 289.57

Figure 6.8: The minimum, average and maximum planning time for Openstacks prob-

lems which are solved by both FDT and MIPS-XXL. Note that the problems which were

not solved by both planners are excluded. Each dataset differs from the others on the

number of products/orders that should be delivered and the number of stacks that can

be used during production.

6.2.3.2 Rovers

The total number of solved Rovers problems, based on the planning time, are illus-

trated in figure 6.9. The dark-grey line is representing FDT, while the light-grey line is

representing MIPS-XXL. After 30 minutes, FDT solved 524 problems, which are 308

more problems than MIPS-XXL that solved 216 problems.

Figure 6.7 shows the number of solved problems for each dataset. It shows that

FDT outperforms MIPS-XXL on 12 datasets which are p01-p08, p10, p12-p13 and

p16. While on the other 8 datasets (p09, p11, p14-p15, p17-p20), no planner can solve

any problem because of time out or out of memory.

6.2. Planning with Extended Goal 167

●

●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●

0 100 200 300 400 500 600 700 800 900 1050 1200 1350 1500 1650 1800

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Planning Time (in seconds)

To
ta

l S
ol

ve
d

P
ro

bl
em

s

● fdt
mips−xxl

Figure 6.9: The accumulated number of solved problem for Rovers domain based on

planning time FDT (dark-grey) and MIPS-XXL (light-grey). The total number of prob-

lems is 2000 (20 datasets, each of which has 100 problems). A higher line means that

the planner can solve more problems in shorter time than another.

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Dataset

To
ta

l S
ol

ve
d

P
ro

bl
em

s

0

20

40

60

80

100
fdt
mips−xxl

100

63

100

73

85

14

99

20

12

0

24

1

43

15
11 9

0 0

15

6
0 0

15
9 10

3 0 0 0 0

10
3 0 0 0 0 0 0 0 0

Figure 6.10: The number of solved problem per dataset for Rovers domain using FDT

(dark-grey) and MIPS-XXL (light-grey). There are 20 datasets i.e. p01-p20, each of

which has 100 problems. Each dataset differs from others on the numbers of rovers,

objects, and waypoints.

Figure 6.11 shows the minimum, the maximum and the average planning time of

FDT and MIPS-XXL based on the problems solved by both planners6. There are no

results for datasets p05, p09, p11, p14, p15 and p17-p20 because MIPS-XXL and FDT

did not solve any problem in these datasets. Overall, FDT has a significant average

planning time which is less by about 50 seconds.

6The problems which were not solved by both planners are excluded

168 Chapter 6. Evaluation

Dataset
Solved by Both FDT MIPS-XXL

(Total Problems) Min(s) Avg(s) Max(s) Min(s) Avg(s) Max(s)

p01 63 (100) 0.08 4.96 56.25 0.01 73.16 278.51

p02 73 (100) 0.08 0.69 5.0 0.01 50.47 286.85

p03 14 (100) 0.11 0.36 0.5 0.03 173.32 430.8

p04 20 (100) 0.08 0.35 2.15 0.02 37.31 212.64

p05 0 (100) - - - - - -

p06 1 (100) 5.38 5.38 5.38 0.06 0.06 0.06

p07 15 (100) 0.12 0.18 0.29 0.03 18.61 277.82

p08 9 (100) 0.19 0.3 0.47 0.07 2.16 17.11

p09 0 (100) - - - - - -

p10 6 (100) 0.43 0.81 2.14 0.2 1.83 3.02

p11 0 (100) - - - - - -

p12 8 (100) 0.21 0.49 1.45 0.08 0.32 1.41

p13 3 (100) 0.63 122.26 365.25 4.6 8.43 15.2

p14 0 (100) - - - - - -

p15 0 (100) - - - - - -

p16 3 (100) 1.17 1.39 1.69 0.89 4.86 11.25

p17 0 (100) - - - - - -

p18 0 (100) - - - - - -

p19 0 (100) - - - - - -

p20 0 (100) - - - - - -

215 0.08 3.56 365.25 0.01 54.97 430.8

Figure 6.11: The average planning time for Rovers problems which are solved by both

FDT and MIPS-XXL. Note that the problems which were not solved by both planners

are excluded. Each dataset differs from others on the numbers of rovers, objects, and

waypoints.

Overall, FDT outperforms MIPS-XXL either in planning time or coverage. This

fact is clearly shown in figure 6.9 where FDT solved about 400 problems within only

20 seconds, while MIPS-XXL never reached that number after 30 minutes. On the

other hand, FDT solved more than twice the number of problems solved by MIPS-

XXL. In addition, MIPS-XXL was never solving more problems than FDT on every

dataset.

6.2.3.3 Storage

The overall number of solved problems of the planners are summarised in figure 6.12.

The dark-grey and light-grey are representing FDT and MIPS-XXL respectively. In 30

6.2. Planning with Extended Goal 169

●

●●
●●●●●●●●●●●●●●●●

●●
●●

0 100 200 300 400 500 600 700 800 900 1050 1200 1350 1500 1650 1800

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Planning Time (in seconds)

To
ta

l S
ol

ve
d

P
ro

bl
em

s

● fdt
mips−xxl

Figure 6.12: The number of solved problem for Storage domain based on planning time

FDT (dark-grey) and MIPS-XXL (light-grey). The total number of problems is 2000 (20

datasets, each of which has 100 problems). A higher line means that the planner can

solve more problems in shorter time than another.

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Dataset

To
ta

l S
ol

ve
d

P
ro

bl
em

s

0

20

40

60

80

100
fdt
mips−xxl

100100

81

96

69

23

74

23

11
18

7 7 1010 9 6

15
11

4 3 4 2 3 2 3 0 3 0 2 0
4

0 2 0 2 0 2 0 3 0

Figure 6.13: The number of solved problems per dataset for Storage domain using FDT

(dark-grey) and MIPS-XXL (light-grey). There are 20 datasets i.e. p01-p20, each of

which has 100 problems. Each dataset differs from the others on the number of crates,

hoists, and storages.

minutes, FDT solved 408 problems, which are 107 more than MIPS-XXL that solved

301 problems.

The details of the number of solved problems for each dataset are shown in figure

6.13. It shows that FDT can solve some problems on every dataset. On the other hand,

MIPS-XXL can only solve problems in 12 datasets which are p01-p12, and it cannot

solve any problem in datasets p13-p20 because of time out.

170 Chapter 6. Evaluation

Dataset
Solved by Both FDT MIPS-XXL

(Total Problems) Min(s) Avg(s) Max(s) Min(s) Avg(s) Max(s)

p01 100 (100) 0.11 0.13 0.21 0.02 0.03 0.04

p02 78 (100) 0.15 0.2 0.28 0.03 0.09 0.23

p03 11 (100) 0.22 0.25 0.29 0.06 0.07 0.08

p04 15 (100) 0.32 0.46 0.93 0.09 0.13 0.24

p05 10 (100) 0.75 0.89 1.55 0.24 19.19 189.52

p06 5 (100) 0.96 1.0 1.04 0.31 0.35 0.39

p07 6 (100) 1.27 1.68 3.1 0.47 0.53 0.65

p08 5 (100) 1.62 9.7 26.37 0.59 0.73 0.94

p09 9 (100) 3.15 4.79 8.98 1.08 1.36 1.7

p10 3 (100) 3.84 31.69 86.97 1.45 1.57 1.73

p11 2 (100) 4.79 7.44 10.09 1.89 1.9 1.91

p12 2 (100) 5.64 5.94 6.23 2.11 2.19 2.27

p13 0 (100) - - - - - -

p14 0 (100) - - - - - -

p15 0 (100) - - - - - -

p16 0 (100) - - - - - -

p17 0 (100) - - - - - -

p18 0 (100) - - - - - -

p19 0 (100) - - - - - -

p20 0 (100) - - - - - -

246 0.11 1.12 86.97 0.02 0.97 189.52

Figure 6.14: The average planning time for Storage problems which are solved by both

FDT and MIPS-XXL. Note that the problems which were not solved by both planners

are excluded. Each dataset differs from the others on the number of crates, hoists, and

storages.

There is an interesting result from this domain. Unlike in the Openstacks and the

Rovers domains, MIPS-XXL can solve more problems than FDT in some datasets

which are p02 and p05. In dataset p02, FDT generated 22 invalid plans and never

timed out. While in dataset p05, FDT was time out on some problems.

Figure 6.14 shows the minimum, the maximum and the average planning time of

FDT and MIPS-XXL based on the problems solved by both planners7. There is no data

for dataset p13-p20 because MIPS-XXL cannot solve any problem in those datasets.

Overall, there is much difference on the average planning time between both planners.

Overall, FDT slightly outperforms MIPS-XXL for the Storage domain. This fact

7The problems which were not solved by both planners are excluded

6.2. Planning with Extended Goal 171

is shown in figure 6.9 where FDT solved 107 more problems than MIPS-XXL.

6.2.4 Discussion

The results in §6.2.3.1, §6.2.3.2 and §6.2.3.3 indicate that FDT has better planning time

and coverage in all domains comparing to MIPS-XXL. This shows that the compilation

technique used in FDT (see §4.1) is more efficient comparing to MIPS-XXL. Note that

both planners are basically using the same heuristics technique i.e. hFF [Hoffmann and

Nebel, 2001].

[Edelkamp et al., 2006] describes that MIPS-XXL compiles every state-trajectory

constraint into a Büchi automaton and generates the corresponding PDDL codes to

simulate the automaton’s state-transition. [Edelkamp, 2006] provides more details

about this compilation scheme with a notable statement: ”the size of the Büchi au-

tomaton for a given state-trajectory constraint formula can be exponential in the length

of the formula“. Unfortunately, this critical property can significantly degrade the

performance of MIPS-XXL for a problem with a large number of state-trajectory con-

straints. This is because MIPS-XXL will generate new actions in order to perform the

automaton’s state-transition. Since the size of the automaton can be exponential, then

the number of new actions can be exponential as well.

On the other hand, the compilation scheme implemented in FDT (see §4.1) is using

a different approach: every state-trajectory constraint is compiled into a finite automa-

ton and only one new action is generated to performed the automaton’s state transitions

using conditional effects. Thus, the number of new actions after compilation is linear

to the number of constraints. We suspect that this is the reason why FDT performed

better than MIPS-XXL.

Domain
Average Planning Time8 Solved Problems

FDT MIPS-XXL FDT MIPS-XXL

Openstacks 3.48 7.98 1776 1491

Rovers 3.56 54.97 524 216

Storage 1.12 0.97 408 301

Figure 6.15: The summary of the average planning time and the number of solved

problems by FDT and MIPS-XXL for all domains.

172 Chapter 6. Evaluation

6.2.5 Summary

Figure 6.15 summarises the results of experiments. It shows that the compilation tech-

nique described in §4.1 is a promising approach to solve a planning problem with ex-

tended goals. By implementing the technique into the FastDownward planner (FDT),

it outperforms MIPS-XXL in three IPC domains which are Openstacks, Rovers and

Storage.

8The average planning time for problems solved by FDT and MIPS-XXL. The problems which are
not solved by both planners are excluded.

6.3. Planning Configuration Changes 173

6.3 Planning Configuration Changes

This section describes experiments that aim to measure the performance of the Nuri

planner that implements the technique described in §4.2 to solve system configuration

tasks. We chose MIPS-XXL planner for comparison. Two metrics were used to com-

pare the planners’ performance i.e. the planning time, and the planning coverage (the

number of solved problems within given deadline). For the configuration tasks, we

used three artificial systems that should be configured in two different scenarios.

6.3.1 Design of Experiments

6.3.1.1 Scenarios

The experiments were designed to focus on solving the system configuration tasks in

the cloud environment. We used two different scenarios for each use-case i.e. the

cloud-deployment and the cloud-burst scenarios.

In the cloud-deployment scenario, we deploy a system from scratch to a cloud

infrastructure. Figure 6.16 illustrates the current (left) and the desired (right) configu-

ration state of an example system consisting of two virtual machines and two services.

Since there are dependencies between the components (the virtual machine with the

service that runs on it, and between services), then the deployment process of the sys-

tem must preserve particular global constraints, for example: service app1 must be

running before service app0 is running.

On the other side, figure 6.17 illustrates the current (left) and the desired (right)

cloud0

VM

s0

VM

s1

cloud0
current state desired state

Figure 6.16: The cloud deployment scenario where the left and the right are the current

and the desired configuration state of the system respectively. The arrows are repre-

senting the dependencies between services. s0→ s1 means that s0 depends on s1.

Thus, s1 must be started before s0, and s1 must be stopped after s0.

174 Chapter 6. Evaluation

cloud1cloud0

VM

s00

VM

s01

cloud1

client

cloud0

VM

s00

VM

s01

client

current state desired state

VM

s10

VM

s11

VM

s10

VM

s11

Figure 6.17: The cloud burst scenario where the left and the right are the current and

the desired configuration state of the system respectively. The arrows are representing

the dependencies between services (s00 → s01 means that s00 depends on s01,

thus, s01 must be started before s00, or s01 must be stopped after s00), or between

the client and the service (the client must always refer to a running service).

configuration state of an example system in the cloud-burst scenario. This scenario as-

sumes that a company has a private cloud infrastructure (cloud0) which runs various

services to serve its 24-hours operations. One of them is the most important one be-

cause it processes all financial transactions from the company’s branch offices. Thus,

the system administrator has prepared a backup system installed in the private cloud

as well. Unfortunately, due to the limited resource of the physical machines, the com-

pany’s own private cloud infrastructure is not capable of serving the spikes in demand

which usually happens on the last three days of each month. Therefore, before the

spike period, the administrator plans to migrate the main system temporarily to the

public cloud (cloud1) to minimise its response time. Each configuration task of this

scenario will have two cloud infrastructures and two identical systems, where one of

the system will be migrated to another cloud.

Although both scenarios look similar, but they have different characteristic. The

cloud-burst tasks involve a reconfiguration of an existing system that, even for a small

system, can yield a “butterfly” effect of configuration changes due to the dependencies

between the resources. On the other hand, this effect usually does not exist when

deploying the system from scratch e.g. cloud-deployment tasks.

The planners were asked to solve configuration tasks that configure three artificial

systems i.e. system-A, system-B, and system-C in both cloud deployment and cloud

burst scenarios. Every configuration task is defined in SFP where the specification

6.3. Planning Configuration Changes 175

consists of the resource models (schemata), the current and the desired state of the

system, and the global constraints – the constraints that should be maintained during

configuration changes.

6.3.1.2 Nuri Planner

We have developed the Nuri planner which is capable of finding a solution plan for

SFP configuration tasks. The planner consists of three components: the compiler, the

search engine, and the postprocessor. The compiler implements the SFP semantics

described in §3.4 as well as the translation technique describe in §4.2 that translates a

configuration task into a classical planning problem. In addition, the compiler also im-

plements the compilation scheme describe in §4.1. The search engine is taken from the

FastDownward [Helmert, 2006] classical planner (without any modification). And the

postprocessor implements the postprocessing technique described in §4.2. All com-

ponents are implemented in Ruby, except the search engine which is implemented in

C++. Note that the Nuri planner has implemented the parallel multi-heuristics search

technique described in §4.2.3. However, in this experiment, since we will compare it

with another planner that only supports a single heuristic, then for fairness we disabled

this parallel capability so that only one heuristic can be used at a time.

Since Nuri’s search engine supports several heuristics, we created two Nuri planner

instances that use two different heuristics: 1) NuriFF that uses hFF heuristic [Hoffmann

and Nebel, 2001], and 2) NuriLM that uses hLM heuristic [Richter et al., 2008]. There

are several reasons why we chose these heuristics:

• Both heuristics have been empirically proved to have good performances on var-

ious planning domains. This is supported by the planners which won the Inter-

national Planning Competition (IPC): FF [Hoffmann and Nebel, 2001] (hFF) in

2000, FASTDOWNWARD [Helmert, 2006] (hFF) in 2004, and LAMA (hLM and

hFF) [Richter and Westphal, 2010] in 2008 and 2011.

• From our observations, we found many mutual exclusive actions in configuration

tasks. For examples: all virtual machines can be created or deleted simultane-

ously; software packages can be installed simultaneously on different machines.

hFF is pretty good on estimating the heuristic value (i.e. an estimated distance of

an action to the goal) of these mutual exclusive actions. This is supported by the

fact that hFF computes the heuristics by solving a “relaxed” planning problem

176 Chapter 6. Evaluation

using the planning-graph technique [Blum and Furst, 1997a]9, which allows the

planner to select two or more mutual exclusive actions simultaneously in a single

step. Thus, it is highly likely that these mutual exclusive actions will have the

same heuristic values. This is a good estimation since it is similar to the charac-

teristic of the solution plan of the original problem. In addition, hFF will set the

heuristic value to infinite if the action is not part of the solution of the relaxed

problem, which helps the planner to avoid visiting superfluous states.

• Another thing that we found from the observations is that the configuration tasks

have a common characteristic: a particular fact must be obtained before or after

another. For examples: a virtual machine must be created before it is running; a

software package is installed after its virtual machine is running and before the

service is running. This characteristic is similar to the definition of landmarks

(see §2.2.4.2). Since hLM computes the heuristics based on landmarks, then we

can expect that it will produce good heuristic values.

6.3.1.3 Settings

We chose MIPS-XXL planner for comparison10. However, since it only accepts prob-

lems defined in PDDL3, then we also specified every configuration task in PDDL3.

For fairness, we tried to define every task as similar as possible in PDDL3 and SFP.

For example, in both representations, we define the same number of objects and use

similar logic formulas in the actions’ preconditions and the global constraints. The

examples of configuration tasks in PDDL3 and SFP can be found in appendix C. Note

that MIPS-XXL only supports one heuristic i.e. hFF .

Besides MIPS-XXL, there is another planner that can solve a planning problem

with global constraints i.e. SGPlan [Hsu et al., 2006]. However, it cannot solve any

problem except the IPC-5 domains. We does not know the reason because it is only

distributed in binary. We are not aware of other planners that natively supports PDDL3.

In the experiments, every dependency is defined as an implication formula of the

global constraints. For example, if service a depends on b (b must be started before a,

or b must be stopped after a), then we define the following implication formula in the

SFP configuration task:
9Although the planning-graph technique can solve a planning problem in exponential-time, but it is

guaranteed that it can solve a “relaxed” planning problem in polynomial [Hoffmann and Nebel, 2001].
10Since MIPS-XXL can only generate a sequential plan, then for the sake of fairness, we also disabled

the partial-order plan generator of the Nuri planner during experiments. The partial-order plan generator
can be easily activated by passing a particular option to the Nuri planner.

6.3. Planning Configuration Changes 177

1 global {
2 ...
3 if a.running = true then b.running = true
4 ...
5 }

On the other hand, the dependency is defined also as implication formula in the PDDL
task:

1 (:constraints (and
2 ...
3 (always (imply (running a) (running b)))
4 ...
5))

All experiments are using the same settings. Every experiment was running on a

server with Intel Xeon CPU 8 cores, 2.4 GHz, 48 GB of memory, and Linux operating

system. However, Nuri and MIPS-XXL were set to use one CPU core and a maximum

of 24 GB of memory. For every task, every planner was given a maximum of 8 hours

to solve it.

6.3.2 Description of the Systems

6.3.2.1 System-A

System-A is an artificial system inspired by a typical system consisting of m identical

subsystems so that the requests can be processed in parallel. Each subsystem has

multilayer application services. In the front end, there is a load balancer service which

equally distributes the requests among the back end subsystems.

Figure 6.18 illustrates the architecture of system-A, which has a set of application

services which are are grouped “vertically” into one or more subsystems, where there

are dependencies (arrows) between services in the same group. The first service of

every subsystem is connected to the load balancer service. Every service is running

on a virtual machine (VM). Thus, there is an internal dependency between the service

with its VM: the service can only be installed or started after the VM has been created

and started, and the VM can only be stopped if the service has been stopped.

We created different configurations of system-A, each of which has different com-

bination of the number of subsystems (m) and the number of layers (n). The example

of configuration tasks for the cloud-deployment scenario of system-A with 2 subsys-

tems (each has 2 services) in SFP and PDDL are available in §C.1.1.1 and §C.1.1.2

178 Chapter 6. Evaluation

VM

App

VM

App

VM

App

…
…

VM

App

VM

App

VM

App

…
…

VM

App

VM

App

VM

App

…
…

……

VM

LB

m

n

Figure 6.18: System-A: a cloud-based system where there are m subsystems, each of

which has n application layers. All subsystems are connected to a load balancer (LB)

as the service interface to the user.

respectively. While the example of tasks for the cloud-burst scenario are available in

§C.1.2.1 and §C.1.2.2 respectively.

6.3.2.2 System-B

System-B is an artificial system inspired by a typical multilayer system where services

at particular layer depend on services at the next layer. Figure 6.19 illustrates the

architecture of system-B. Unlike system-A, the services are divided horizontally into

several layers. Each layer is a subsystem consisting of one load balancer and a set

of application services. These services are not connected to each other, but they are

connected to the current layer’s load balancer and the next layer’s load balancer (for

accessing services at the next layer). These connections represent the dependencies

(arrows) between the services, for example: the application services must be started

before their load balancer is started. Every service is running on top of a VM. Thus,

the VM must be created before the service can be installed and started.

We created different configurations of system-B, each of which has different com-

bination of the number of layers (n) and the number of application services per layer

6.3. Planning Configuration Changes 179

…
…
VM

App

VM

App

VM

App……
VM

LB

VM

App

VM

App

VM

App……
VM

LB

VM

App

VM

App

VM

App……
VM

LB

m

n

Figure 6.19: System-B: a cloud-based system where there are n layers of subsystem,

each of which consists of one load balancer (LB) and m application services.

(m). §C.2.1.1 and §C.2.1.2 show the example of configuration tasks for the cloud-

deployment scenario of system-B with 2 layers (each has 2 services) in SFP and PDDL

respectively. While §C.2.2.1 and §C.2.2.2 show the example of configuration tasks for

the cloud-burst scenario in SFP and PDDL respectively.

6.3.2.3 System-C

System-C is the last artificial system that has n application services whose dependen-

cies were randomly generated. For the system with n services, a script generated a ran-

dom directed acyclic graph with (n−1) nodes. Then the script added an extra node to

the graph as the front-end service of the system (the graph has in total n nodes), where

the extra node has out-edges to other nodes whose in-degree is equal to zero. The

graph edges were then used to define the dependencies (arrows) between the services.

180 Chapter 6. Evaluation

app0

app1

app2app4

app6

app7

app8

app10

app3 app5

app9

Figure 6.20: System-C: a cloud-based system where there are n application services

where the dependencies between the services are acyclic and generated randomly.

This figure shows an example system with 10 application services, whose dependen-

cies were generated randomly, and 1 front-end application service. The boxes are the

services which are running on VMs, and the arrows are the dependencies between the

services.

Every service is running on a VM. Thus, the VM must be created before installing and

starting the service.

For n services and n≥ 5, the script generated 10 random graphs which were used to

generate 10 different configurations that have the same number of services but different

combination of dependencies. We did not check the isomorphic property between the

graphs because the checking process is an NP-hard problem. However, a graph will not

be used if it has the same set of edges with previously generated graphs. Figure 6.20

shows an example system with 11 application services where app0 is the front-end

service of the system. §C.3.1.1 and §C.3.1.2 show configuration tasks for the cloud-

deployment scenario this example system in SFP and PDDL respectively. While the

configuration tasks for cloud-burst scenario are shown in §C.3.2.1 and §C.3.2.2.

6.3. Planning Configuration Changes 181

6.3.3 Results and Analysis

The followings are the experiment results and analysis of all use-cases.

6.3.3.1 System-A

For each scenario, we conducted two experiments using system-A. In the first ex-

periment, we generated 100 configurations where m and n are ranging from 1 to 10,

and the number of services is (m× n) + 1 for the cloud deployment scenario and

((m×n)+1)×2 for the cloud burst scenario.

To give a better analysis of the effect of different number of subsystems (m) and

different number of layers (n) of system-A to the performance of the planners, we

conducted the second experiment using two different datasets of configurations. In the

first dataset, we set m to be fixed at 10 and n is set ranging from 1 to 50. On the other

hand, the second dataset has configurations where n is fixed at 10 and m is set ranging

from 1 to 50. Thus, each dataset has 50 different configurations.

Cloud Deployment Scenario

Tables in figure 6.21 show the results of the first experiment where m and n are ranging

from 1 to 10. These tables show that NuriFF and NuriLM solved all configuration tasks,

while MIPS-XXL can only solve the tasks when the system has less than 80 services –

it cannot solve 6 (of 100) tasks due to timeout. The planning time of MIPS-XXL was

significantly increasing when the size of the system increases, for example: 129.07 and

231.43 seconds for {m = 10,n = 6} and {m = 10,n = 7} respectively. On the other

hand, there is no significant increase in planning time of NuriFF (2 and 2.43 seconds)

and NuriLM (2.03 and 2.78 seconds). In general, NuriFF has a slightly better planning

time (about 1 second) than NuriLM . And for the largest task {m = 10,n = 10} (101

services), both generated a sequential plan with 404 actions.

In the second experiment, figure 6.22 shows the planning times of MIPS-XXL,

NuriFF , and NuriLM for the first dataset (m is fixed at 10). This figure shows that all

problems can be solved by NuriFF and NuriLM . Similar to the previous results, MIPS-

XXL can only solve any task when the number of services is less than 80. The graph

also shows that in general, NuriFF outperforms NuriLM for average 7.7 seconds. For

the largest task {m = 10,n = 50} (501 services), NuriFF and NuriLM solved the task

in 483.54 seconds and 482.87 seconds respectively. They generated a sequential plan

consisting of 2004 actions.

182 Chapter 6. Evaluation

MIPS-XXL
time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.03 0.05 0.06 0.07 0.09 0.11 0.15 0.18 0.22 0.27

2 0.05 0.07 0.12 0.18 0.27 0.43 0.65 0.99 1.5 2.19

3 0.06 0.11 0.21 0.44 0.83 1.59 2.55 3.93 5.93 8.68

4 0.08 0.2 0.44 1.04 2.22 3.92 6.74 11.22 17.07 25.93

5 0.09 0.27 0.88 2.4 4.81 8.82 15.63 25.78 40.4 61.46

6 0.12 0.44 1.6 3.99 8.78 18.21 31.45 53.65 82.94 125.89

7 0.15 0.67 2.72 7.03 16.03 31.45 57.34 96.89 153.12 231.22

8 0.18 1.1 4.13 11.95 28.14 53.2 97.7 162.44 256.62 to

9 0.23 1.63 6.28 17.81 42.57 87.23 161.2 266.73 to to

10 0.3 2.18 9.54 27.83 62.71 129.07 231.43 to to to

NuriFF

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.25 0.26 0.29 0.29 0.29 0.32 0.35 0.34 0.34 0.41

2 0.28 0.29 0.3 0.35 0.39 0.4 0.42 0.5 0.52 0.6

3 0.26 0.31 0.37 0.4 0.47 0.51 0.52 0.59 0.65 0.82

4 0.28 0.35 0.4 0.44 0.51 0.58 0.72 0.74 0.91 1.02

5 0.28 0.34 0.44 0.57 0.6 0.76 0.85 0.94 1.15 1.34

6 0.33 0.39 0.52 0.6 0.69 0.85 1.05 1.32 1.49 1.86

7 0.35 0.44 0.5 0.66 0.82 1.1 1.26 1.74 2.09 2.42

8 0.32 0.44 0.58 0.8 0.94 1.24 1.69 2.05 2.43 3.45

9 0.35 0.52 0.63 0.85 1.13 1.57 1.99 2.41 3.21 4.57

10 0.39 0.53 0.71 0.91 1.45 2.0 2.43 3.08 4.08 5.21

NuriLM

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.24 0.28 0.3 0.29 0.29 0.31 0.34 0.34 0.36 0.38

2 0.28 0.27 0.3 0.34 0.41 0.4 0.44 0.5 0.52 0.54

3 0.27 0.31 0.37 0.4 0.45 0.53 0.57 0.58 0.67 0.82

4 0.31 0.34 0.4 0.5 0.55 0.59 0.7 0.8 0.99 1.1

5 0.29 0.38 0.47 0.51 0.62 0.75 0.95 1.08 1.29 1.47

6 0.31 0.39 0.49 0.61 0.79 0.91 1.14 1.5 1.76 2.1

7 0.31 0.43 0.59 0.69 0.87 1.15 1.54 1.85 2.19 2.82

8 0.34 0.5 0.6 0.79 1.06 1.47 1.85 2.24 3.02 4.05

9 0.37 0.47 0.67 0.9 1.32 1.71 2.17 3.02 3.86 4.72

10 0.36 0.52 0.8 1.07 1.43 2.03 2.78 4.01 4.72 6.29

Figure 6.21: The tables show the planning time for system-A in the cloud deployment

scenario. From top to bottom are the planning times of MIPS-XXL, NuriFF and NuriLM.

Note that “to” equals to timeout – the planner cannot find the solution within the dead-

line.

6.3.
P

lanning
C

onfiguration
C

hanges
183

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

n (the number of layers), where m = 10 (fixed)

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

100

200

300

400

500 MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.22: The planning time (y-axis) for system-A in the cloud deployment scenario where m is fixed at 10 and n (x-axis) is ranging from 1 to

50. Note that the number of services is (n×m)+1. From 50 tasks, NuriFF and NuriLM solved all tasks, while MIPS-XXL only solved 7 tasks.

184
C

hapter6.
E

valuation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

m (the number of subsystems), where n = 10 (fixed)

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

100

200

300

400

500

MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.23: The planning time (y-axis) for system-A in the cloud deployment scenario where m (x-axis) is ranging from 1 to 50 and n is fixed at

10. Note that the number of services is (n×m)+1. From 50 tasks, NuriFF and NuriLM solved all tasks, while MIPS-XXL only solved 7 tasks.

6.3. Planning Configuration Changes 185

515.81 seconds respectively.

By comparing figure 6.22 and 6.23, we may notice that NuriFF and NuriLM have

slightly worse planning time on the second dataset compared to the first dataset.

From the tables and the figures, notice that NuriFF significantly outperforms MIPS-

XXL. Since MIPS-XXL is using hFF heuristic in search, which is the same as NuriFF

, then this indicates that our compilation technique for handling the global constraints

(in particular for the simple implication) is better than the technique used in MIPS-

XXL. §6.3.4 discusses this in more details.

Cloud Burst Scenario

The tables in figure 6.24 show the results of the first experiment: the planning times

of MIPS-XXL, NuriFF and NuriLM where m and n are ranging from 1 to 10. These

tables show that NuriLM solved all configuration tasks, NuriFF can only solve 42 (of

100) tasks, while MIPS-XXL can only solve 23 (of 100) tasks. NuriFF and MIPS-

XXL cannot solve other problems because they exceeded the memory limit (“mem”)

and timeout (“to”) respectively. Note that for the largest task {m = 10,n = 10} (202

services), NuriLM generated a sequential plan with 911 steps within 275.75 seconds.

Figure 6.24 show that NuriLM significantly outperforms NuriFF , which is opposite

to the results of the cloud deployment scenario (see figure 6.21) where NuriFF slightly

outperforms NuriLM . We suspect that this is because the current and the desired state

of every task of the cloud burst scenario have very small differences – they only differ

in the location of the virtual machines of the main system. When hFF (used by NuriFF

) generates the relaxed planning graph to compute the heuristic values, the goal state

can be reached in only a few steps. Thus, the solution of the relaxed planning problem

has less number of actions compared to the original solution. Some actions which are

required in the solution plan of the original problem, such as starting services after

stopping them, have heuristic value equal to infinity since they are not part of the

solution plan of the relaxed planning problem. This makes the search engine visiting

a large number of superfluous states, which significantly effects the overall planning

time. §6.3.4 discusses this in more details.

On the other hand, NuriLM computes the heuristic values based on the landmarks.

It starts from the known landmarks which are the goal atoms, and then uses the causal-

links defined in actions’ precondition/effect in order to find other landmarks. Thus, the

required adversary actions will be set with better heuristic value since their effects are

parts of the landmarks.

186 Chapter 6. Evaluation

MIPS-XXL
time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.02 0.06 0.13 0.26 0.54 1.07 2.16 3.53 5.58 8.56

2 0.06 0.61 3.94 16.43 52.64 141.98 to to to to

3 0.29 12.36 156.4 to to to to to to to

4 1.84 98.62 to to to to to to to to

5 10.63 to to to to to to to to to

6 70.92 to to to to to to to to to

7 to to to to to to to to to to

8 to to to to to to to to to to

9 to to to to to to to to to to

10 to to to to to to to to to to

NuriFF

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.32 0.34 0.32 0.35 0.44 0.44 0.54 0.72 1.4 3.4

2 0.33 0.38 0.43 0.61 1.36 7.11 53.82 426.34 mem mem

3 0.35 0.39 0.65 3.48 53.37 984.95 mem mem mem mem

4 0.41 0.55 2.49 80.51 mem mem mem mem mem mem

5 0.42 0.75 18.14 mem mem mem mem mem mem mem

6 0.41 1.39 171.57 mem mem mem mem mem mem mem

7 0.44 4.96 mem mem mem mem mem mem mem mem

8 0.44 19.9 mem mem mem mem mem mem mem mem

9 0.51 94.3 mem mem mem mem mem mem mem mem

10 0.6 412.72 mem mem mem mem mem mem mem mem

NuriLM

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.27 0.3 0.59 0.32 0.36 0.4 0.46 0.46 0.53 0.6

2 0.28 0.37 0.45 0.44 0.59 0.64 0.74 0.88 1.02 1.16

3 0.34 0.42 0.54 0.65 0.8 1.06 1.37 1.76 2.37 3.01

4 0.35 0.54 0.7 0.99 1.38 1.83 2.66 3.75 5.24 7.48

5 0.4 0.57 0.86 1.21 1.86 3.0 4.95 7.65 11.78 16.68

6 0.41 0.6 1.01 1.81 3.17 5.67 9.44 15.65 23.63 36.84

7 0.44 0.74 1.36 2.68 5.31 10.21 17.19 28.89 42.41 62.98

8 0.47 0.96 2.0 4.11 8.51 15.72 28.22 48.43 73.65 109.77

9 0.48 1.05 2.65 5.94 12.61 24.99 43.99 73.91 116.85 175.97

10 0.56 1.37 3.59 8.75 18.97 37.55 67.57 114.68 178.71 275.75

Figure 6.24: The tables show the planning time for system-A in the cloud burst scenario.

From top to bottom are the planning times of MIPS-XXL, NuriFF and NuriLM. Note that

“to” means timeout, and “mem” means out of memory

6.3.
P

lanning
C

onfiguration
C

hanges
187

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

n (the number of layers), where m = 10 (fixed) and total services = (10 * n) + 1

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

500

1000

1500

2000

2500 MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.25: The planning time (y-axis) for system-A in the cloud burst scenario where m is fixed at 10 and n (x-axis) is ranging from 1 to 50.

Note that the number of services is (n×m)+1. From 50 tasks, NuriLM solved 17 tasks, NuriFF solved 2 tasks, and MIPS-XXL solved 1 task.

188
C

hapter6.
E

valuation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

m (the number of subsystems), where n = 10 (fixed) and total services = (10 * m) + 1

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

500

1000

1500

2000
MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.26: The planning time (y-axis) for system-A in the cloud burst scenario where m (x-axis) is ranging from 1 to 50 and n is fixed at 10.

Note that the number of services is (n×m)+1. From 50 tasks, NuriLM solved 18 tasks, NuriFF solved 1 task, and MIPS-XXL solved none.

6.3. Planning Configuration Changes 189

seconds, and the plan consists of 1541 actions.

Figure 6.26 shows the planning times of MIPS-XXL, NuriFF , and NuriLM for the

second dataset (n is fixed at 10). The figure shows that NuriLM solved 18 (of 50) tasks,

NuriFF solved 1 (of 50) task, and MIPS-XXL cannot solve any task (always timeout).

NuriLM and NuriFF cannot solve other task because out of memory. The largest task

that can be solved by NuriLM is {m = 18,n = 10} (362 services), which is solved in

2150.34 seconds, and the plan consists of 1631 actions.

Similar to the results of the cloud deployment scenario, NuriLM suffers degradation

of performance when dealing with the second dataset (17 solved tasks) comparing to

the first one (18 solved tasks). On the other hand, although NuriFF cannot solve all

tasks, but it significantly outperforms MIPS-XXL. This confirms the previous claim

that our compilation technique for handling the global constraints (in particular for the

simple implication) is better than the technique used in MIPS-XXL.

190 Chapter 6. Evaluation

6.3.3.2 System-B

For each scenario, we conducted two experiments using system-B. In the first experi-

ment, we generated 100 configurations where m and n are ranging from 1 to 10, and

the number of services is (m×n)+n and ((m×n)+n)×2 for the cloud deployment

and the cloud burst scenarios respectively.

To give a better analysis of the effect of different number of subsystems (m) and

different number of layers (n) to the performance of the planners, we conducted the

second experiment using two different datasets of configurations: m to be fixed at 10

and n is set ranging from 1 to 50; n is fixed at 10 and m is set ranging from 1 to 50.

Notice that each dataset has 50 different configurations.

Cloud Deployment Scenario

The tables in figure 6.27 show the results of the first experiment where m and n are

ranging from 1 to 10. These tables show that NuriFF and NuriLM solved all config-

uration tasks, while MIPS-XXL solved 86 (of 100) tasks – other 14 tasks cannot be

solved due to timeout. The planning time of MIPS-XXL was significantly increasing

when the size of the system increases, for example: 133.25 and 277.43 seconds for

{m = 10,n = 5} and {m = 10,n = 6} respectively. On the other hand, there is no sig-

nificant increase in the planning time of NuriFF (2.13 and 3.03 seconds) and NuriLM

(2.97 and 3.87 seconds). In general, NuriFF has a slightly better planning time (about

1 seconds) than NuriLM . For the largest task {m = 10,n = 10} (110 services), both

generated a sequential plan with 440 actions.

The results of the second experiment using the first dataset (m is fixed at 10) are

depicted in figure 6.28. The figure shows that NuriFF and NuriLM solved all tasks,

while MIPS-XXL only solved 6 (of 50) tasks – others cannot be solved due to timeout.

The figure also shows that NuriLM outperforms NuriFF for about (average) 111.62

seconds. NuriFF and NuriLM solved the largest task {m = 10,n = 50} (550 services) in

1529.54 and 842.27 seconds respectively. They generated a sequential plan consisting

of 2200 actions.

Figure 6.29 shows the experiment results using the second dataset (n is fixed at

10). The figure shows that MIPS-XXL only solved 5 (of 50) tasks, while NuriFF

and NuriLM solved all tasks. Similar above, NuriLM outperforms NuriFF for about

(average) 61.89 seconds. The largest task {m = 50,n = 10} (510 services) was solved

by NuriFF and NuriLM in 1641.65 and 1252.30 seconds respectively. They generated

6.3. Planning Configuration Changes 191

MIPS-XXL
time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.04 0.06 0.1 0.14 0.26 0.34 0.53 0.81 1.23 1.77

2 0.04 0.09 0.19 0.39 0.77 1.45 2.6 4.05 6.16 9.11

3 0.06 0.16 0.43 1.05 2.27 4.29 7.59 12.89 20.38 30.53

4 0.08 0.18 0.74 2.03 4.9 10.81 19.88 32.5 52.23 79.32

5 0.05 0.35 1.39 4.31 10.84 22.2 41.06 70.36 112.61 171.85

6 0.06 0.59 2.63 8.22 20.16 40.97 76.85 133.92 213.57 to

7 0.15 1.04 4.65 14.91 36.17 73.47 136.1 230.61 to to

8 0.18 1.64 7.26 22.28 55.6 122.02 219.85 to to to

9 0.23 2.14 10.72 33.64 84.54 196.06 to to to to

10 0.21 3.06 16.09 49.89 133.25 277.43 to to to to

NuriFF

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.39 0.37 0.37 0.48 0.36 0.48 0.41 0.55 0.48 0.79

2 0.27 0.36 0.42 0.38 0.43 0.59 0.54 0.61 0.78 0.9

3 0.28 0.32 0.39 0.46 0.52 0.61 0.7 0.8 0.93 1.28

4 0.28 0.36 0.44 0.53 0.61 0.78 0.91 1.09 1.3 1.76

5 0.29 0.38 0.49 0.59 0.79 0.94 1.18 1.48 1.77 2.51

6 0.31 0.42 0.54 0.68 0.94 1.19 1.52 1.92 2.4 3.4

7 0.32 0.45 0.61 0.82 1.08 1.71 2.07 2.62 3.31 4.65

8 0.33 0.48 0.75 1.02 1.38 1.84 2.44 3.46 4.24 6.05

9 0.37 0.54 0.76 1.1 1.69 2.26 3.0 4.39 5.96 7.97

10 0.41 0.65 1.08 1.44 2.13 3.03 4.25 5.67 7.55 9.62

NuriLM

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.42 0.42 0.35 0.4 0.44 0.43 0.48 0.61 0.59 1.14

2 0.37 0.48 0.42 0.58 0.63 0.55 0.73 0.85 0.93 1.44

3 0.47 0.52 0.57 0.65 0.75 0.81 0.92 0.96 1.14 1.64

4 0.29 0.38 0.44 0.55 0.9 0.86 1.05 1.3 1.62 2.19

5 0.33 0.45 0.49 0.74 0.9 1.14 1.44 1.77 2.17 2.99

6 0.32 0.43 0.61 0.74 1.0 1.4 1.84 2.29 2.95 3.71

7 0.33 0.51 0.74 0.95 1.31 1.67 2.22 2.96 3.66 5.05

8 0.37 0.55 0.77 1.15 1.6 2.01 2.99 4.07 4.83 6.67

9 0.4 0.6 0.89 1.34 1.94 2.66 3.69 4.89 6.5 9.01

10 0.39 0.71 1.65 1.76 2.97 3.87 4.98 6.65 8.52 10.97

Figure 6.27: The tables show the planning time for system-B in the cloud deployment

scenario. From top to bottom are the planning times of MIPS-XXL, NuriFF and NuriLM

(“to” equals to timeout).

192
C

hapter6.
E

valuation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

n (the number of layers), where m = 10 (fixed)

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

500

1000

1500 MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.28: The planning time (y-axis) for system-B in the cloud deployment scenario where m is fixed at 10 and n (x-axis) is ranging from 1

to 50. Note that the number of services is (n×m)+n. From 50 tasks, NuriLM and NuriFF solved all tasks, while MIPS-XXL only solved 6 task.

6.3.
P

lanning
C

onfiguration
C

hanges
193

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

m (the number of subsystems), where n = 10 (fixed)

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

500

1000

1500

MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.29: The planning time (y-axis) for system-B in the cloud deployment scenario where m (x-axis) is ranging from 1 to 50 and n is fixed

at 10. Note that the number of services is (n×m)+n. From 50 tasks, NuriLM and NuriFF solved all tasks, while MIPS-XXL solved 5 task.

194 Chapter 6. Evaluation

a sequential plan with 2040 actions.

The tables and the figures show that NuriFF significantly outperforms MIPS-XXL.

This confirms the above claim that our technique for handling global constraints (in

particular for the simple implication) is better than MIPS-XXL.

MIPS-XXL
time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.02 0.05 0.12 0.26 0.56 1.02 2.05 3.57 5.74 8.83

2 0.27 8.59 278.61 to to to to to to to

3 10.27 to to to to to to to to to

4 to to to to to to to to to to

5 to to to to to to to to to to

6 to to to to to to to to to to

7 to to to to to to to to to to

8 to to to to to to to to to to

9 to to to to to to to to to to

10 to to to to to to to to to to

NuriFF

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.29 0.3 0.34 0.36 0.35 0.39 0.5 0.71 1.36 3.22

2 0.31 0.34 0.42 0.59 1.51 7.21 47.13 336.83 mem mem

3 0.38 0.45 0.88 6.61 94.62 mem mem mem mem mem

4 0.52 0.76 9.83 290.81 mem mem mem mem mem mem

5 0.51 3.37 188.6 mem mem mem mem mem mem mem

6 0.66 28.36 mem mem mem mem mem mem mem mem

7 1.39 278.42 mem mem mem mem mem mem mem mem

8 4.91 mem mem mem mem mem mem mem mem mem

9 19.39 mem mem mem mem mem mem mem mem mem

10 86.5 mem mem mem mem mem mem mem mem mem

NuriLM

time(s) n = 1 2 3 4 5 6 7 8 9 10

m = 1 0.26 0.29 0.34 0.34 0.41 0.41 0.48 0.52 0.54 0.58

2 0.3 0.42 0.49 0.54 0.66 0.78 0.97 1.14 1.41 1.72

3 0.41 0.49 0.66 0.85 1.12 1.57 2.13 2.93 3.72 5.11

4 0.43 0.58 0.83 1.3 1.97 3.19 4.73 7.27 10.99 15.7

5 0.51 0.75 1.29 2.29 3.94 6.71 10.85 16.96 26.43 39.24

6 0.59 1.02 1.93 4.1 7.42 12.95 22.66 35.65 54.99 80.88

7 0.69 1.38 3.15 6.63 13.3 24.08 40.98 67.23 102.0 153.19

8 0.77 2.08 4.92 10.63 21.47 40.78 70.55 113.75 178.6 264.54

9 1.03 2.83 8.05 18.99 38.88 73.91 114.42 186.32 289.4 428.13

10 1.31 3.82 10.55 24.84 51.79 97.98 182.85 293.79 466.05 698.83

Figure 6.30: The tables show the planning time for system-B in the cloud burst scenario.

From top to bottom are the planning times of MIPS-XXL, NuriFF and NuriLM . Note that

“to” means timeout, and “mem” means out of memory.

6.3.
P

lanning
C

onfiguration
C

hanges
195

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

n (the number of layers), where m = 10 (fixed)

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

500

1000

1500

2000

2500

MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.31: The planning time (y-axis) for system-B in the cloud burst scenario where m is fixed at 10 and n (x-axis) is ranging from 1 to 50.

Note that the number of services is (n×m)+n. From 50 tasks, NuriLM solved 14 tasks, while NuriFF and MIPS-XXL only solved 1 task.

196
C

hapter6.
E

valuation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

m (the number of subsystems), where n = 10 (fixed)

P
la

nn
in

g
T

im
e

(in
 s

ec
on

ds
)

0

200

400

600

800

1000 MIPS−XXL
Nuri−FF
Nuri−LM

Figure 6.32: The planning time (y-axis) for system-B in the cloud burst scenario where m (x-axis) is ranging from 1 to 50 and n is fixed at 10.

Note that the number of services is (n×m)+n. From 50 tasks, NuriLM solved 13 tasks, NuriFF solved 1 task, and MIPS-XXL solved none.

6.3. Planning Configuration Changes 197

Cloud Burst Scenario

The tables in figure 6.30 show the results of the first experiment. They show that

NuriLM solved all configuration tasks, NuriFF solved 37 (of 100) tasks, while MIPS-

XXL only solved 14 (of 100) tasks. NuriFF and MIPS-XXL cannot solve other prob-

lems because they exceeded the memory limit (“mem”) and timeout (“to”) respectively.

Note that for the largest task {m = 10,n = 10} (220 services), NuriLM generated a se-

quential plan with 992 steps within 698.83 seconds.

The results show the superiority of NuriLM comparing to MIPS-XXL and NuriFF

, which is similar to the results of system-A in the same scenario. Hence, it is likely

that heuristic hLM is more suitable than hFF to be used for solving configuration tasks

in the cloud burst scenario, regardless of the type of the system.

In the second experiment, figure 6.31 shows the planning times of MIPS-XXL,

NuriFF , and NuriLM for the first dataset (m is fixed at 10). The figure shows that

NuriLM solved 14 (of 50) tasks, where NuriFF and MIPS-XXL only solved 1 (of 50)

tasks. NuriLM and NuriFF cannot solve other tasks because they exceeded the memory

limit (24GB), while MIPS-XXL was timeout. The largest task that can be solved by

NuriLM is {m = 10,n = 14} (308 services), which is solved in 2771.57 seconds, and

the plan consists of 1352 actions.

Figure 6.32 shows the planning times of MIPS-XXL, NuriFF , and NuriLM for the

second dataset (n is fixed at 10). The figure shows that NuriLM solved 13 (of 50) tasks,

NuriFF solved 1 (of 50) task, and MIPS-XXL cannot solve any task (always timeout).

NuriLM and NuriFF cannot solve other task because out of memory. The largest task

that can be solved by NuriLM is {m = 13,n = 10} (280 services), which is solved in

991.85 seconds, and the plan consists of 1289 actions.

198 Chapter 6. Evaluation

6.3.3.3 System-C

For the experiments using system-C, we set the number of services ranging from 5 to

100. For each number of services, 10 random directed acyclic graphs were generated

where their nodes and edges represent application services and the service dependen-

cies respectively. Thus, there are in total 960 configurations, which are grouped into

96 datasets (based on their number of services).

Cloud Deployment Scenario

Table 6.1: The total solved tasks and the average planning time for generating the

workflows for deploying system-C from scratch using MIPS-XXL, NuriFF , and NuriLM .

Note that “to” equals to timeout.

Total Total Service Solved Problem (out of 10) Avg. Planning Time (s)

Services Dependencies(avg) MIPS-XXL NuriFF NuriLM MIPS-XXL NuriFF NuriLM

5 6.1 10 10 10 0.08 0.32 0.47

6 9.2 10 10 10 0.1 0.34 0.5

7 12.7 10 10 10 0.16 0.35 0.53

8 15.2 10 10 10 0.22 0.38 0.54

9 20.0 10 10 10 0.33 0.4 0.58

10 23.3 10 10 10 0.45 0.45 0.6

11 27.4 10 10 10 0.65 0.46 0.59

12 37.4 10 10 10 0.99 0.49 0.61

13 38.8 10 10 10 1.26 0.51 0.64

14 48.0 10 10 10 1.86 0.52 0.66

15 53.8 10 10 10 2.56 0.56 0.7

16 63.0 10 10 10 3.66 0.63 0.76

17 70.0 10 10 10 4.9 0.63 0.79

18 77.9 10 10 10 6.35 0.7 0.83

19 87.3 10 10 10 8.57 0.74 0.82

20 95.9 10 10 10 11.09 0.72 0.96

21 109.4 10 10 10 14.96 0.78 1.02

22 113.5 10 10 10 17.38 0.83 1.01

23 130.1 10 10 10 23.95 0.89 1.11

24 135.8 10 10 10 28.32 0.92 1.14

25 153.9 10 10 10 38.56 0.99 1.18

26 164.0 10 10 10 46.79 1.08 1.26

27 176.9 10 10 10 57.68 1.03 1.3

28 195.7 10 10 10 82.33 1.16 1.38

29 208.8 10 10 10 93.63 1.2 1.45

30 219.1 10 10 10 107.02 1.32 1.52

31 236.6 10 10 10 131.8 1.3 1.6

32 250.2 10 10 10 158.03 1.45 1.67

33 261.5 10 10 10 186.45 1.46 1.7

34 279.1 10 10 10 220.91 1.59 1.82

35 292.6 10 10 10 263.8 1.69 1.87

Continued on next page

6.3. Planning Configuration Changes 199

Table6.1 – continued from previous page

Total Total Service Solved Problem (out of 10) Avg. Planning Time (s)

Services Dependencies(avg) MIPS-XXL NuriFF NuriLM MIPS-XXL NuriFF NuriLM

36 316.1 2 10 10 277.32 1.65 2.01

37 330.5 0 10 10 to 1.78 2.07

38 351.0 0 10 10 to 1.98 2.16

39 375.6 0 10 10 to 1.93 2.3

40 397.6 0 10 10 to 2.18 2.44

41 414.9 0 10 10 to 2.1 2.58

42 426.7 0 10 10 to 2.35 2.67

43 452.6 0 10 10 to 2.33 2.79

44 478.1 0 10 10 to 2.63 2.94

45 493.3 0 10 10 to 2.45 3.07

46 527.4 0 10 10 to 2.74 3.23

47 535.0 0 10 10 to 2.82 3.3

48 576.9 0 10 10 to 3.09 3.53

49 593.7 0 10 10 to 3.01 3.71

50 612.8 0 10 10 to 3.32 3.86

51 634.5 0 10 10 to 3.3 3.96

52 666.1 0 10 10 to 3.53 4.17

53 694.4 0 10 10 to 3.76 4.33

54 712.9 0 10 10 to 3.76 4.49

55 740.8 0 10 10 to 4.07 4.74

56 778.6 0 10 10 to 4.06 4.92

57 795.3 0 10 10 to 4.84 5.12

58 828.4 0 10 10 to 4.51 5.31

59 864.1 0 10 10 to 5.11 5.49

60 881.3 0 10 10 to 4.89 5.7

61 915.9 0 10 10 to 5.17 6.02

62 945.2 0 10 10 to 5.8 6.26

63 969.5 0 10 10 to 5.46 6.43

64 1005.8 0 10 10 to 6.19 6.7

65 1044.2 0 10 10 to 5.83 6.91

66 1069.2 0 10 10 to 6.68 7.15

67 1112.8 0 10 10 to 6.51 7.49

68 1129.5 0 10 10 to 6.51 7.77

69 1160.5 0 10 10 to 7.39 8.0

70 1218.5 0 10 10 to 7.08 8.37

71 1249.1 0 10 10 to 7.65 8.74

72 1266.2 0 10 10 to 7.57 8.95

73 1312.8 0 10 10 to 8.08 9.37

74 1357.8 0 10 10 to 8.61 9.73

75 1390.2 0 10 10 to 8.67 10.06

76 1426.4 0 10 10 to 8.97 10.21

77 1471.6 0 10 10 to 9.29 10.56

78 1502.4 0 10 10 to 10.24 10.97

79 1549.7 0 10 10 to 10.05 11.33

80 1597.2 0 10 10 to 10.29 11.7

81 1633.7 0 10 10 to 10.81 12.17

82 1661.5 0 10 10 to 11.11 12.51

83 1718.2 0 10 10 to 11.14 12.95

84 1762.9 0 10 10 to 12.05 13.45

Continued on next page

200 Chapter 6. Evaluation

Table6.1 – continued from previous page

Total Total Service Solved Problem (out of 10) Avg. Planning Time (s)

Services Dependencies(avg) MIPS-XXL NuriFF NuriLM MIPS-XXL NuriFF NuriLM

85 1792.7 0 10 10 to 12.02 13.79

86 1821.1 0 10 10 to 12.6 14.13

87 1867.3 0 10 10 to 12.89 14.6

88 1905.1 0 10 10 to 13.45 15.02

89 1968.7 0 10 10 to 13.98 15.61

90 2002.1 0 10 10 to 14.09 15.96

91 2071.7 0 10 10 to 15.0 16.64

92 2084.6 0 10 10 to 15.08 17.11

93 2159.2 0 10 10 to 15.85 17.64

94 2210.6 0 10 10 to 16.26 18.16

95 2246.5 0 10 10 to 16.4 18.58

96 2274.6 0 10 10 to 17.27 19.08

97 2329.4 0 10 10 to 17.58 19.66

98 2389.6 0 10 10 to 18.18 20.31

99 2414.1 0 10 10 to 19.12 20.59

100 2495.0 0 10 10 to 19.3 21.5

879.95 312 960 960 50.33 5.73 6.51

Table 6.1 summarises the number of solved problem and the average planning time for

every dataset of cloud-deployment scenario using MIPS-XXL, NuriFF and NuriLM .

The table shows that MIPS-XXL solved 312 (of 960) tasks – it cannot solve tasks that

has 37 or more services due to timeout. On the other hand, NuriFF and NuriLM solved

all tasks in average 5.73 and 6.51 seconds respectively. NuriFF and NuriLM solved the

largest tasks (100 services and 2495 service dependencies) in average 19.3 and 21.5

seconds respectively. Note that they generated a sequential plan with 404 actions.

Notice that NuriFF significantly outperforms MIPS-XXL (both planners are using

hFF as the heuristic technique). This confirms the previous statement that our technique

for handling the global constraints (in particular for the simple implication) is better

than MIPS-XXL.

There is an interesting fact on the planning times of large tasks: although the num-

ber of service dependencies of system-C is extremely large compared to system-A and

system-B, but it did not significantly affect the performance of NuriFF and NuriLM .

Note that dependencies between system components are defined as global constraints.

Thus, the size of the constraint formula is linear to the number of dependencies.

System Task Total Total Service Planning Time (s)

Services Dependencies NuriFF NuriLM

System-A {m = 10,n = 10} 101 100 5.21 6.29

System-B {m = 10,n = 9} 100 170 7.55 8.52

System-C 100 100 2495 19.3 21.5

6.3. Planning Configuration Changes 201

The above table shows the planning times of system-A, B, and C in the cloud

deployment scenario. All systems have 100-101 services. System-C (2495) has 25 and

13 times more service dependencies than system-A (100) and B (170) respectively.

NuriFF solved the task of system-C in 19.3 seconds, which is just 3.7 and 2.5 times

more than the time required for solving system-A and B respectively. And NuriLM

solved the task of system-C in 21.5 seconds, which is just 3.4 and 2.5 times more than

the time required for solving system-A and B respectively.

Cloud Burst Scenario

Table 6.2: The total solved tasks and the average planning time for generating the work-

flows for system-C in the cloud burst scenario using MIPS-XXL, NuriFF , and NuriLM .

Note that “to” equals to timeout, and “mem” equals to out of memory.

Total Total Service Solved Problem (out of 10) Avg. Planning Time (s)

Services Dependencies(avg) MIPS-XXL NuriFF NuriLM MIPS-XXL NuriFF NuriLM

10 12.2 10 10 10 22.89 0.39 0.4

12 18.4 7 10 10 121.6 0.42 0.43

14 25.4 2 10 10 189.4 0.46 0.47

16 30.4 0 10 10 to 0.52 0.54

18 40.0 0 10 10 to 0.58 0.54

20 46.6 0 10 10 to 0.72 0.59

22 54.8 0 10 10 to 0.99 0.65

24 74.8 0 10 10 to 1.52 0.75

26 77.6 0 10 10 to 2.38 0.82

28 96.0 0 10 10 to 4.48 0.87

30 107.6 0 10 10 to 9.3 0.95

32 126.0 0 10 10 to 17.75 1.08

34 140.0 0 10 10 to 47.6 1.17

36 155.8 0 10 10 to 89.9 1.37

38 174.6 0 10 10 to 196.22 1.47

40 191.8 0 10 10 to 390.83 1.63

42 218.8 0 10 10 to 924.73 1.75

44 227.0 0 4 10 to 1499.04 2.01

46 260.2 0 0 10 to mem 2.24

48 271.6 0 0 10 to mem 2.48

50 307.8 0 0 10 to mem 2.73

52 328.0 0 0 10 to mem 3.05

54 353.8 0 0 10 to mem 3.38

56 391.4 0 0 10 to mem 3.58

58 417.6 0 0 10 to mem 4.15

60 438.2 0 0 10 to mem 4.71

62 473.2 0 0 10 to mem 5.12

64 500.4 0 0 10 to mem 5.78

66 523.0 0 0 10 to mem 6.03

68 558.2 0 0 10 to mem 6.91

70 585.2 0 0 10 to mem 7.42

Continued on next page

202 Chapter 6. Evaluation

Table6.2 – continued from previous page

Total Total Service Solved Problem (out of 10) Avg. Planning Time (s)

Services Dependencies(avg) MIPS-XXL NuriFF NuriLM MIPS-XXL NuriFF NuriLM

72 632.2 0 0 10 to mem 7.59

74 661.0 0 0 10 to mem 8.24

76 702.0 0 0 10 to mem 9.89

78 751.2 0 0 10 to mem 11.09

80 795.2 0 0 10 to mem 11.62

82 829.8 0 0 10 to mem 12.76

84 853.4 0 0 10 to mem 13.91

86 905.2 0 0 10 to mem 15.01

88 956.2 0 0 10 to mem 16.11

90 986.6 0 0 10 to mem 17.6

92 1054.8 0 0 10 to mem 19.2

94 1070.0 0 0 10 to mem 19.66

96 1153.8 0 0 10 to mem 22.1

98 1187.4 0 0 10 to mem 23.9

100 1225.6 0 0 10 to mem 25.69

102 1269.0 0 0 10 to mem 27.25

104 1332.2 0 0 10 to mem 30.2

106 1388.8 0 0 10 to mem 32.84

108 1425.8 0 0 10 to mem 35.5

110 1481.6 0 0 10 to mem 36.56

112 1557.2 0 0 10 to mem 42.01

114 1590.6 0 0 10 to mem 43.11

116 1656.8 0 0 10 to mem 44.44

118 1728.2 0 0 10 to mem 48.44

120 1762.6 0 0 10 to mem 53.64

122 1831.8 0 0 10 to mem 57.36

124 1890.4 0 0 10 to mem 61.22

126 1939.0 0 0 10 to mem 63.21

128 2011.6 0 0 10 to mem 68.64

130 2088.4 0 0 10 to mem 72.23

132 2138.4 0 0 10 to mem 78.36

134 2225.6 0 0 10 to mem 78.01

136 2259.0 0 0 10 to mem 83.57

138 2321.0 0 0 10 to mem 92.49

140 2437.0 0 0 10 to mem 96.24

142 2498.2 0 0 10 to mem 100.74

144 2532.4 0 0 10 to mem 104.68

146 2625.6 0 0 10 to mem 119.48

148 2715.6 0 0 10 to mem 119.44

150 2780.4 0 0 10 to mem 129.59

152 2852.8 0 0 10 to mem 134.38

154 2943.2 0 0 10 to mem 139.24

156 3004.8 0 0 10 to mem 159.52

158 3099.4 0 0 10 to mem 157.38

160 3194.4 0 0 10 to mem 172.71

162 3267.4 0 0 10 to mem 172.91

164 3323.0 0 0 10 to mem 187.96

166 3436.4 0 0 10 to mem 191.04

168 3525.8 0 0 10 to mem 209.21

Continued on next page

6.3. Planning Configuration Changes 203

Table6.2 – continued from previous page

Total Total Service Solved Problem (out of 10) Avg. Planning Time (s)

Services Dependencies(avg) MIPS-XXL NuriFF NuriLM MIPS-XXL NuriFF NuriLM

170 3585.4 0 0 10 to mem 216.93

172 3642.2 0 0 10 to mem 227.99

174 3734.6 0 0 10 to mem 240.67

176 3810.2 0 0 10 to mem 226.04

178 3937.4 0 0 10 to mem 270.6

180 4004.2 0 0 10 to mem 271.69

182 4143.4 0 0 10 to mem 274.29

184 4169.2 0 0 10 to mem 309.59

186 4318.4 0 0 10 to mem 318.51

188 4421.2 0 0 10 to mem 333.37

190 4493.0 0 0 10 to mem 342.75

192 4549.2 0 0 10 to mem 361.73

194 4658.8 0 0 10 to mem 346.95

196 4779.2 0 0 10 to mem 395.85

198 4828.2 0 0 10 to mem 425.82

200 4990.0 0 0 10 to mem 427.69

1759.89 19 174 960 76.79 131.52 88.99

Table 6.2 summarises the number of solved problems and the average planning time

for every dataset in the cloud burst scenario. The table shows that MIPS-XXL solved

19 (of 960) tasks (other tasks were timeout), NuriFF solved 174 (of 960) tasks (oth-

ers tasks were out of memory), and NuriLM solved all tasks in average 76.98 seconds.

NuriLM solved the largest tasks (200 services) in average 317.03 seconds, and it gener-

ated sequential plans wtih 911 actions.

Notice that although NuriFF cannot solve all tasks, but it still outperforms MIPS-

XXL. This result also confirms that our technique is better than MIPS-XXL for han-

dling the global constraints.

System Task Total Total Service Planning Time (s)

Services Dependencies NuriLM

System-A {m = 10,n = 10} 202 201 275.97

System-B {m = 10,n = 9} 200 341 466.05

System-C 200 200 4990 427.69

The above table show the planning times of system-A, B, and C in the cloud burst

scenario. All systems have 200-202 services. System-C (4990) has 24.8 and 14.6 times

more service dependencies than system-A (201) and B (341) respectively. NuriLM

solved the task of system-C in 427.69 which is less than the time required for solving

system-B (466.05 seconds), and higher than system-A (275.97 seconds). From this

results, it looks like that the more constraints the problem has, it does not mean that

204 Chapter 6. Evaluation

the problem is more difficult to be solved. For the case of system B and C, it seems

that the more constraints the problem has, the more easier it is to be solved.

6.3.4 Discussion

Representing dependencies between system components as global constraints was mo-

tivated by the purpose for evaluating the efficiency of the compilation technique de-

scribed in §4.1, which is implemented in NuriFF and NuriLM , compared to other tech-

nique such as the one implemented in MIPS-XXL, in particular when the number of

dependencies is very large. Each dependency is represented as an implication clause

where the formula of the global constraints is a conjunction of implication clauses.

Since the number of implication clauses is equal to the number of dependencies, then

the size of the formula is equal to the number of dependencies as well.

The experiment results consistently show that NuriFF and NuriLM outperforms

MIPS-XXL in all tasks. Because NuriFF and MIPS-XXL are using the same heuristic

technique which is hFF , then this proves that our compilation technique described in

§4.1 is more efficient than the one implemented in MIPS-XXL.

Referring to §6.2.4, MIPS-XXL can generate an exponential number of new ac-

tions after compilation in respect to the size of the formula. We suspect that this is the

main reason why MIPS-XXL’s performance was degrading when solving problems

with a large number of dependencies. For example, MIPS-XXL cannot solve cloud-

deployment tasks of system-A and system-B that have more than 60 dependencies

because it introduces > 260 new actions.

On the other hand, NuriFF and NuriLM did not suffer the same problem. Based on

our observation, we found that our compilation technique is very efficient such that it

did not introduce any new action after compilation. This is because it applies the simple

implication compilation rules (see definition 4.3) which can avoid the introduction of

new action. Thus, the numbers of actions before and after compilation are the same

for all cloud-deployment and cloud-burst tasks. Hence, the sizes of the search space

before and after compilation are the same.

Another interesting result from this experiment is that NuriLM significantly out-

performs NuriFF on solving cloud-burst tasks. For example, NuriLM can solve all

cloud-burst tasks of system-C while NuriFF can only solve the tasks with maximum

36 services (see §6.3.3.3). Since both planners are using the same compilation tech-

nique, then this shows that hLM is generating a better heuristic compared to hFF for

6.3. Planning Configuration Changes 205

cloud-burst tasks. A better heuristic helps reducing the search time because it helps

the planner to avoid visiting superfluous states. We suspect that since the differences

between the initial and goal states are small (they differs only on the location of the

virtual machines), then hFF does not include some required actions into the solution

of the relaxed problem. Hence, these actions will have heuristic values equal to infin-

ity which does not help the planner in action selection during search. The following

example illustrates why hLM is better than hFF for cloud-burst tasks.

Consider a configuration task with two services s1 and s2, each of which is run-

ning on virtual machine vm1 and vm2 respectively, and s1 depends on s2. The virtual

machines will be migrated from one (c1) to another cloud (c2). The task can be de-

scribed as follows:

initial-state: vm1.on = c1, vm1.running = true, s1.running = true, vm2.on = c1,

vm2.running = true, s2.running = true

goal-state: vm1.on = c2, vm1.running = true, s1.running = true, vm2.on = c2,

vm2.running = true, s2.running = true

global-constraints: (s1.running = true⇒ s2.running = true)∧ (s1.running = true

⇒ vm1.running = true) ∧ (s2.running = true⇒ vm2.running = true)

actions:

• vm1.migrate, pre: (vm1.on=c1 ∧ vm1.running=false), eff: (vm1.on=c2)

• vm1.start, pre: (vm1.running=false), eff: (vm1.running=true)

• vm1.stop, pre: (vm1.running=true), eff: (vm1.running=false)

• s1.start, pre: (s1.running=false), eff: (s1.running=true)

• s1.stop, pre: (s1.running=true), eff: (s1.running=false)

• vm2.migrate, pre: (vm2.on=c1 ∧ vm2.running=false), eff: (vm2.on=c2)

• vm2.start, pre: (vm2.running=false), eff: (vm2.running=true)

• vm2.stop, pre: (vm2.running=true), eff: (vm2.running=false)

• s2.start, pre: (s2.running=false), eff: (s2.running=true)

• s2.stop, pre: (s2.running=true), eff: (s2.running=false)

Using the rules in definition 4.3, the task after compiling the global constraint is:

initial-state: vm1.on = c1, vm1.running = true, s1.running = true, vm2.on = c1,

vm2.running = true, s2.running = true

goal-state: vm1.on = c2, vm1.running = true, s1.running = true, vm2.on = c2,

206 Chapter 6. Evaluation

vm2.running = true, s2.running = true

actions:

• vm1.migrate, pre: (vm1.on=c1 ∧ vm1.running=false), eff: (vm1.on=c2)

• vm1.start, pre: (vm1.running=false), eff: (vm1.running=true)

• vm1.stop, pre: (vm1.running=true∧ s1.running=false), eff: (vm1.running=false)

• s1.start, pre: (s1.running=false∧ vm1.running=true∧ s2.running=true),
eff: (s1.running=true)

• s1.stop, pre: (s1.running=true), eff: (s1.running=false)

• vm2.migrate, pre: (vm2.on=c1 ∧ vm2.running=false), eff: (vm2.on=c2)

• vm2.start, pre: (vm2.running=false), eff: (vm2.running=true)

• vm2.stop, pre: (vm2.running=true∧ s2.running=false), eff: (vm2.running=false)

• s2.start, pre: (s2.running=false∧ vm2.running=true), eff: (s2.running=true)

• s2.stop, pre: (s2.running=true∧ s1.running=false), eff: (s2.running=false)

To solve the above task using hFF , the planner will first compute the heuristic

values by generating the following “relaxed” planning graph11:

s1.stop
vm1.stopvm1.on=c1

vm1.running=true
s1.running=true
s1.running=false

vm2.on=c1
vm2.running=true
s2.running=true

vm1.on=c1
vm1.running=true
s1.running=true

vm2.on=c1
vm2.running=true
s2.running=true

vm1.on=c1
vm1.running=true
vm1.running=false
s1.running=true
s1.running=false

vm2.on=c1
vm2.running=true
s2.running=true
s2.running=false

s2.stop

vm1.migrate

vm2.stop

vm1.on=c1
vm1.on=c2

vm1.running=true
vm1.running=false
s1.running=true
s1.running=false

vm2.on=c1
vm2.running=true
vm2.running=false
s2.running=true
s2.running=false

vm1.on=c1
vm1.on=c2

vm1.running=true
vm1.running=false
s1.running=true
s1.running=false

vm2.on=c1
vm2.on=c2

vm2.running=true
vm2.running=false
s2.running=true
s2.running=false

vm2.migrate

state-1
state-2

state-3
state-4 state-5

You may notice that the last state-layer contains the goals. Hence, the relaxed planning

problem has been solved. Based on the graph, we can set the following heuristic value

(distance to the goal) to each action:

Action Heuristic Value

vm2.migrate 1

vm1.migrate, vm2.stop 2

vm1.stop, s2.stop 3

s1.stop 4

vm1.start, vm2.start, s1.start, s2.start ∞

11Based on the principle of relaxed planning problem, a variable can have more than value at partic-
ular state (see §2.2.4.1).

6.3. Planning Configuration Changes 207

From the above table, you may aware that the heuristic value of vm1.start, vm2.start,

s1.start and s2.start is infinity since they are not part of the solution of the relaxed

problem. Because of this, the search engine can select a wrong action at a particular

state e.g. selecting s1.start rather than s2.start first because they have the same

heuristic values. This can lead the planner visiting superfluous state. This situation

can be found in all cloud-burst tasks. When such situation occurs, then the planner

will have to backtrack to find another path. For a large size problem, this backtracking

operation can be costly and significantly increase the overall planning time since the

total number of possible orderings is exponential in respect to the number of possible

actions.

On the other hand, if we set the planner to use hLM as the heuristic technique, then

it will first generate the following Domain Transition Graphs12(DTGs) [Richter et al.,

2008] for all variables:

vm1.on=c2

vm1.migrate

vm1.running=true

vm1.running=false

vm1.start vm1.stop

vm1.on=c1 s1.running=true

s1.running=false

s1.start s1.stop

vm2.on=c2

vm2.migrate

vm2.running=true

vm2.running=false

vm2.start vm2.stop

vm2.on=c1 s2.running=true

s2.running=false

s2.start s2.stop

The above DTGs are then used to determine a set of landmarks that should be achieved

by every possible plan. Based on definition of landmark (see §2.2.4.2), all goals

are landmarks. Hence, vm1.on = c2, vm1.running = true, s1.running = true,

vm2.on = c2, vm2.running = true, s2.running = true are landmarks because

they are goals of the task. Using the above DTGs, the planner can automatically infer

other landmarks:

• Because there is only one transition from vm1.on = c1 to vm1.on = c2, then
the preconditions of vm1.migrate is landmark.

• vm1.running = false is a landmark because it requires by vm1.migrate to
achieve landmark vm1.on = c2. The same thing is also applied to vm2.running = false.

12In DTG, a node is a possible value that can be assigned to a variable, and an arrow is the transition
whose label is the name of the action. More details about DTG can be found in [Helmert, 2006].

208 Chapter 6. Evaluation

• s1.running = false is a landmark because it requires by vm1.stop to achieve
landmark vm1.running = false. We use a similar reason to determine s2.running = false
as a landmark.

The landmarks that are found by hLM are:

{ vm1.on = c2, vm1.running = true, vm1.running = false, s1.running = true,

s1.running = false, vm2.on = c2, vm2.running = true, vm2.running = false,

s2.running = true, s2.running = false }

Based on the effects of the actions and the formula to calculate the heuristics (see

§2.2.4.2), these landmarks gives a particular heuristic value to every required actions,

in particular the actions where hFF sets infinity as their heuristic value i.e. vm1.start,

vm2.start, s1.start and s2.start. In addition, we can generate a partial ordering

constraints between the landmarks based on the above DTGs e.g. vm2.running = true

≺ s2.running = false. These ordering constraints can help the planner to prioritize

an action if its effect achieves a landmark that preceeds landmarks provided by other

actions. Thus, hLM gives a better heuristic value compared to hFF , in particular for

cloud-burst tasks.

6.3.5 Summary

To summarise the above experiments:

• The results of NuriFF and NuriLM validate that our technique described in §4.2

can automatically generate workflows as the solutions of configuration tasks.

• For the cloud deployment scenario, in general, NuriFF slightly outperforms

NuriLM on tasks of system-A and system-C. NuriFF also slightly outperforms

NuriLM on small-size tasks (number of services ≤ 100) of system-B. However,

NuriLM outperforms NuriFF on large tasks (number of services > 100) of system-

B.

• NuriFF outperforms MIPS-XXL on all tasks. Since both planners are using the

same heuristic that is hFF , then this implies that the compilation technique de-

scribed in §4.1 is more efficient than the one implemented in MIPS-XXL.

• NuriLM is superior to NuriFF on all cloud-burst tasks. Because both planners

are using the same compilation technique, then this implies than hLM generates

better heuristic values compared to hFF for cloud-burst tasks.

6.4. Planning and Deploying Configuration Changes in Practice 209

6.4 Planning and Deploying Configuration Changes in

Practice

The previous section has shown that the Nuri planner has a promising performance for

solving configuration tasks of artificial systems. This section takes us to the next step:

it describes experiments which aim to validate that the technique described in §4.2 can

be used in practice to generate workflows for configuring real systems. In addition, the

experiments also aim to validate that the choreography technique described in §5.2 can

be used to deploy the configuration changes.

For this purpose, we have built a prototype configuration tool on top of the Nuri

planner as a proof of concept. The tool was then used to configure three real systems

in a cloud environment. The tool implements two deployment approaches:

1. Orchestration – the tool automatically generates the workflow (planning), and

then a central controller orchestrates the workflow execution;

2. Choreography – the tool automatically choreographs the Behavioural Signature

models (choreographing), and then the models were pushed to the agents to en-

able the distributed execution.

Thus, we measure four things during experiments: the planning time, the choreograph-

ing time, the centralised execution time, and distributed execution time.

The next subsection describes the details of the Nuri configuration tool. This is

followed by the descriptions, the experiment results and the analysis of three real use-

cases.

6.4.1 Nuri

Nuri is a configuration tool that uses SFP as the language to define a declarative config-

uration specification of the target system. It implements a semi-distributed architecture

which consists of a Nuri master and a set of Nuri agents, each of which is controlling

a machine. The communications between the master and the agents or between the

agents are using HTTP/JSON protocol. All parts of Nuri are implemented in Ruby,

except the planner’s search engine which is implemented in C++.

The planner is part of the Nuri master. It generates the workflow based on the

specification defined by the administrator, the description of the resource components,

and the current state of the managed system sent by the agents. If we activate the

210 Chapter 6. Evaluation

choreography mode, then the workflow will be further processed to choreograph the

Behavioural Signature (BSig) models.

When Nuri is in orchestration mode, then during execution, the orchestrator com-

ponent of Nuri master sends the actions’ description that should be executed by the

agents within particular ordering constraints as specified in the workflow. The descrip-

tion consists of the action’s name, parameters, preconditions, and effects. The agent

will use the preconditions and the effects to assert whether the environment has met

the constraints before execution, and assert the execution results. If one of these condi-

tions was not met, either a precondition is not satisfied before execution or an effect is

not achieved after execution, then the agent will send a failure response to the master

that will terminate the whole execution – this could also trigger re-planning to gen-

erate an alternative workflow. Note that the execution manager implements a partial

order workflow execution algorithm to exploit the partial-order workflow in order to

decrease the execution time.

On the other hand, when choreography mode is active, then the master will gener-

ate a workflow, choreograph BSig models from the workflow, and then push the models

to target agents. Afterwards, the agents will execute the models independently without

any control from the master. When an agent requires a remote precondition, then it

directly sends a request to the corresponding agent through peer-to-peer communica-

tions. Thus, the master has a loose coupling with the agents, which is an opposite of

the orchestration mode.

The Nuri agent implements an architecture shown in figure 5.2. The agent daemon

is responsible for:

• Accepting a new model of the machine from the Nuri master;

• Instantiating and managing required resource components based on the model;

• Aggregating the current state of all components to be sent to the Nuri master;

• Executing components’ actions based on requests received from the master (or-
chestration mode);

• Receiving a BSig model from the master (choreography mode).

All instances of the resource component are organised in a tree structure which is

equivalent to the tree structure of SFP objects. An agent can directly query the state of

other agents using peer-to-peer communication protocol – this is very useful for shar-

ing configuration between components of different agents, for example: the database

component shares its IP address and port to the webservice component where both

6.4. Planning and Deploying Configuration Changes in Practice 211

VM

Slave-1

VM

Slave-2

VM

Slave-N…

VM

Master

n

Figure 6.33: A typical Hadoop Cluster with 1 Hadoop master and N slaves.

components are on different machines. The agent also implements the cooperative

reactive regression (CRR) (see §5.2.3) algorithm to execute the BSig model.

Every resource component is an instance of a Nuri module. It is responsible for

managing a particular resource, for example: a “package” module can be used to man-

age a software package. A Nuri module is an abstract component which mainly con-

sists of two files: an SFP file that contains a schema (an abstract description of the

resource); and a Ruby file that contains a Ruby class as the implementation of the

schema. The agent invokes method update_state of the components in order to gen-

erate the current state of the machine. The agent will also invoke a particular Ruby

method of the component in order to execute a particular action as requested by the

execution manager.

There is a clear separation between the declarative description in SFP and its Ruby

implementation – this allows us to have different implementations, for example one

in Ruby and another in Java, communicating transparently using the same configura-

tion language. The mapping from SFP to Ruby and vice versa is done by the agent’s

daemon using Ruby-SFP library.

The development of Nuri was mainly motivated as a proof of concept of the tech-

niques described in this thesis. It has not yet implemented any particular security model

in order to secure the entire system from any malicious attacks. However, it is possible

to improve the Nuri’s security, for example: using Transport Layer Security (TLS) for

securing the communications. Some implementation codes have not been optimised.

212 Chapter 6. Evaluation

6.4.2 Use Case 1: Apache Hadoop

Apache Hadoop is a system that allows for the distributed processing of large data

sets across clusters of computers [Foundation, 2014a]. It consists of one Hadoop mas-

ter and a set of Hadoop slaves whose architecture is illustrated in figure 6.33. Every

Hadoop master and slave is running on a virtual machine (VM). The slaves are organ-

ised in a flat structure where every slave has a dependency (arrow) with the master

and there is no dependency between the slaves, which is similar to the architecture of

system-B with a single layer.

We created a Nuri module that has a capability to install/uninstall, configure, and

start/stop the Hadoop master and slave services on the target machines. This module

consists of three SFP schemata, each of which has a corresponding Ruby class, which

are:

• HadoopCommon – contains common configurations and actions shared between

the master and the slaves;

• HadoopMaster – contains specific configurations for the master;

• HadoopSlave – contains specific configurations and actions for the slave.

The following codes are the specification of HadoopCommon in SFP:

1 schema HadoopCommon extends Package {
2 installed = true
3 running = true
4 configured = true
5 name = "hadoop"
6 provider = "tar"
7 version = "2.2.0"
8 source = "http://repository.foo.com/hadoop"
9 home = "/opt/hadoop"

10 user = "hadoop"
11 group = "hadoop"
12 password = "!"
13 java_home = ""
14 data_dir = "/opt/hadoop/data"
15 def install () {
16 condition {
17 this.installed != true
18 }
19 effect {
20 this.installed = true
21 this.running = false
22 this.configured = false
23 }
24 }
25 ... // other actions

6.4. Planning and Deploying Configuration Changes in Practice 213

26 }
27 schema HadoopMaster extends HadoopCommon {
28 cluster_name = "hadoopnuri"
29 }
30 schema HadoopSlave extends HadoopCommon {
31 master: HadoopMaster*
32 def install (master: HadoopMaster) {
33 condition {
34 this.installed != true
35 master.parent.created = true // master.parent is a VM
36 }
37 effect {
38 this.installed = true
39 this.running = false
40 this.configured = false
41 this.master = master
42 }
43 }
44 }

In this experiment, the Hadoop system was deployed from scratch to a cloud in-

frastructure. We used HP Cells (see §2.1.5.4) as the target cloud infrastructure. It is

a system that provides a virtual infrastructure where each tenant has secure “contain-

ers” called as Cells, each of which can have arbitrary virtual machines, virtual storage

volumes and virtual networks [hpc, 2014]. Thus, we created a Nuri module called as

cells13 that can create a Cell container and its virtual resources.

The following is an example of specification for deploying a Hadoop cluster with

one master and three slaves (this requires 4 VMs).

1 include "modules/vm/vm.sfp"
2 include "modules/cell/cell.sfp"
3 include "modules/hadoop/hadoop.sfp"
4 proxy isa Node {
5 sfpAddress = "localhost"
6 hpcell isa Cell {
7 access_uri = "https://cell.foo.com/:8553/caas/rest/v1/cells"
8 name = "herry -cell"
9 }

10 }
11 master isa VM {
12 in_cloud = proxy.hpcell
13 hadoop isa HadoopMaster { }
14 }
15 slave1 isa VM {
16 in_cloud = proxy.hpcell
17 hadoop isa HadoopSlave { }
18 master = master.hadoop
19 }
20 }
21 slave2 extends slave1

13We cannot provide an example of this module due to copyright issue.

214 Chapter 6. Evaluation

22 slave3 extends slave1

●

●

●

●

●

●

●

●

●

●

10 (11) 20 (21) 30 (31) 40 (41) 50 (51) 60 (61) 70 (71) 80 (81) 90 (91) 100 (101)

0

1

2

3

4

5

Total Hadoop Slaves (Total VMs)

T
im

e
(in

 s
ec

on
ds

)

● Planning
Choreographing

Figure 6.34: Planning: time of Nuri for generating a partial-order plan in orchestration

mode. Choreography: time of Nuri for generating BSig models in choreography mode.

●

●

●

●

●

●

●

●

●

●

10 (11) 20 (21) 30 (31) 40 (41) 50 (51) 60 (61) 70 (71) 80 (81) 90 (91) 100 (101)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Total Hadoop Slaves (Total VMs)

T
im

e
(in

 s
ec

on
ds

)

● Orchestration
Choreography

Figure 6.35: Execution time of Nuri for deploying Apache Hadoop system from scratch

on HP Cells.

To measure the performance of Nuri, we created 10 different configurations of

a Hadoop system that has one master and different number of slaves: 10 slaves, 20

slaves, ..., 100 slaves – the master and the slaves were installed and run on different

virtual machines. For each configuration, we ran 10 experiments two times, once with

orchestration and another in choreography mode, and then we calculated the average

time for orchestration and choreography modes. We used a machine with the specifica-

tions Intel CPU 1 core, 2.4 GHz, 8 GB of memory, and Linux operating system as the

Nuri master. Each VM will have 1 CPU core, 4 GB of memory, and Linux operating

6.4. Planning and Deploying Configuration Changes in Practice 215

system. We activated the multi-heuristics (see §4.2.3) of the Nuri planner. Another

machine was set as the cloud proxy that controls an HP Cells account – the machine

has a Nuri agent with the cells module.

Figure 6.34 show the planning and the choreographing average times from 10 ex-

periments. The x-axis shows the number of Hadoop slaves where the numbers in

bracket are the number of virtual machines, while the y-axis shows the planning and

the choreographing times in seconds. Notice that the choreographing times are slightly

higher than the planning time, which is an obvious result since the choreographing

process consists of a planning and a BSig model generation. The planning times them-

selves are likely to be linear to the number of slaves. For the largest case where the

system has 1 master and 100 slaves, the partial-order workflows with 404 actions were

generated in average 3.78 seconds, while the BSig models were generated in average

4.10 seconds.

Figure 6.35 show the average deployment times from 10 experiments using orches-

tration and choreography techniques. Notice that both deployment times are similar

and likely to be linear to the number of slaves. For the largest case, the orchestrations

were finished on average 1118.28 seconds, while the choreography were finished on

average 1163.92 seconds. These show that there is no significant difference between

the orchestration and the choreography techniques. We suspect that this is due to very

low network latency time (< 0.1s) between the master with the managed VMs. We

believe that the result could be different if the network latency time is higher.

However, if there is a problem on Nuri master such as network outage, then the

workflow execution with orchestration will be stopped, and the system will be out of

control. On the other hand, the execution with choreography will not stop because the

agent does not depend on the master. This is clearly increasing the robustness of the

system.

We found that there were several bottleneck issues that affected the deployment

times. First, the backend storage of HP Cells were creating the VMs likely in linear

time14, in the sense that only n VMs can be created at the same time. Thus, although

the workflow has partial ordering constraints (e.g. actions for creating the VMs were

mutually exclusive), and we allowed the Cell module to send parallel requests to the HP

Cells service for creating 100 VMs, but these requests were completed in linear time

by the HP Cells. Second, we used a single repository of Hadoop software package

which should be downloaded by the Apache module during installation, where the size

of the Hadoop software package is 180 megabytes. Thus, the download time were

216 Chapter 6. Evaluation

s11

s9

s7

s8

s4s5
s6

s10

s3-1 s3-2 s3-N…
s2-1 s2-2 s2-N…

s1

Figure 6.36: The architecture of the HP IDOLoop system, where the arrows show the

dependencies between the services.

decreasing when the number of download requests increased because the maximum

throughput (including storage and network latency) of the repository was 12.5 MB/s.

During execution, the ordering constraints of the workflows were maintained by

Nuri (either orchestration or choreography) – for example: the Hadoop slaves will not

be started until the master has been started. We verified this by checking the timestamp

of the action executions in the log files (when the executable was started and finished),

and then compared them across different machines. In addition, we run several Hadoop

applications on the system to ensure that the system was working correctly – for ex-

ample: we run wordcount application available in Hadoop software distribution.

6.4.3 Use Case 2: HP IDOLoop

The HP IDOLoop system [Hewlett-Packard, 2014] is a proprietary software of Hewlett-

Packard for processing large numbers of documents to extract useful information such

as texts, faces, and barcodes. It consists of a set of inter-connected services that form

14This linear time is not caused by Nuri implementation since the requests of VM creation were sent
in parallel to HP Cells. We suspect that the installation of HP Cells used in this experiment had n number
of threads that serve volume creation requests which are required by the VMs, where each thread can
only create one volume at a time.

6.4. Planning and Deploying Configuration Changes in Practice 217

●

●

●

●

●

●

●

●

●

●

10 (11) 20 (21) 30 (31) 40 (41) 50 (51) 60 (61) 70 (71) 80 (81) 90 (91) 100 (101)

0

1

2

3

4

5

6

7

8

9

10

Total s2/s3 services (Total VMs)

T
im

e
(in

 s
ec

on
ds

)

● Planning
Choreographing

Figure 6.37: The Nuri planning time for deploying HP IDOLoop system from scratch on

the HP Cells.

streams of processes. Figure 6.36 illustrates the architecture of the system, which looks

like a combination of system-B and C. The nodes in the figure are services, which are

running on virtual machines, and the arrows are the dependencies between services.

The system can be scaled-up or scaled-down by increasing or decreasing the number

of services of s2/s3. Due to the proprietary issue, we cannot describe more details about

this system.

Since there are 11 types of services (s1, ...,s11), then we created 12 Nuri modules

that have capabilities to install/uninstall, configure and start/stop all type of IDOLoop

services on particular machines. One module contains common configurations and

actions shared between all services through inheritance, while the others are specific

module that contains specific configurations and actions for particular service.

In this experiment, the HP IDOLoop system was deployed from scratch to the HP

Cells cloud infrastructure. We created 20 different configurations of HP IDOLoop

system that have different number of s2/s3: 10, 20 slaves, ..., 100 – service s2 and s3

must be on the same machine while other services were on different machines.

A machine with the specifications of Intel CPU 1 core, 2.4 GHz, 8 GB of mem-

ory, and Linux operating system was used for the Nuri master. The multi-heuristics

(hFF and hLM) and the partial-order plan generated of the Nuri planner were activated.

Another machine was set as the cloud proxy that controls an HP Cells account. Un-

fortunately, we cannot present the example of specification in this thesis due to the

proprietary issue.

Figure 6.37 show the planning and the choreographing average times from 10 ex-

218 Chapter 6. Evaluation

●
●

●

●

●

●

●

●

●

●

10 (19) 20 (29) 30 (39) 40 (49) 50 (59) 60 (69) 70 (79) 80 (89) 90 (99) 100 (109)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

Total s2/s3 services (Total VMs)

E
xe

cu
tio

n
T

im
e

(in
 s

ec
on

ds
)

● Orchestration
Choreography

Figure 6.38: The Nuri execution time for deploying HP IDOLoop system from scratch

on the HP Cells.

periments. The x-axis show the number of s2/s3 services where the numbers in bracket

are the number of virtual machines, while the y-axis show the planning and the chore-

ographing times in seconds. Notice that the choreographing times are slightly higher

than the planning time, which is similar to the Hadoop experiment results. The plan-

ning times are linear to the number of slaves. For the largest case where the system has

109 VMs, the Nuri planner can generate the partial-order workflows with 456 steps in

average 9.43 seconds, while the BSig models were generated in average 9.92 seconds.

Figure 6.38 show the average deployment times from 10 experiments using orches-

tration and choreography techniques for deploying the IDOLoop system with various

configurations. Notice that both techniques have similar deployment times. For the

largest case, the orchestrations were finished in average 1215.15 seconds, while the

choreography were finished in average 1281.49 seconds. Similar to the Hadoop re-

sults, there is no significant difference between the execution times of both techniques.

The experiments also have similar bottleneck issues as found in the Hadoop ex-

periments. During execution, the dependencies between services were maintained by

Nuri (either orchestration or choreography) – for example: service s9 was started after

starting service s5, s6, s7, s8, and s10. We verified this by checking the timestamp of

action executions in the log files (when the execution was started and finished), and

then compared them across different machines.

6.4. Planning and Deploying Configuration Changes in Practice 219

6.4.4 Use Case 3: Configuration Relocation on the BonFIRE In-

frastructure

In this experiment, we performed the configuration relocation process between cloud

infrastructures. The term relocation refers to a process that moves services between

different cloud infrastructures, reliably and without disrupting the operation of the

overall service during the transfer process [Herry and Anderson, 2013]. This is a com-

plex operations; live VM migration is not normally possible between different sites

that use different platforms, or they are controlled by different organisations, so new

copies of the services must be instantiated on the new infrastructure, and any clients

of the service must be reconfigured to reference the new service, before we can tear

down the old service. This is likely to involve some reconfiguration of the services

themselves (as a minimum, the IP addresses will change). Any significant distributed

application will require a more complex reconfiguration, and a carefully crafted work-

flow to preserve a running service during all stages of the transfer.

The experiment was using the BonFIRE infrastructure [Kavoussanakis et al., 2013].

It provides an ideal testbed on which to explore the relocation process; it is a feder-

ated cloud infrastructure with heterogeneous platforms – for example, HPLabs15, Inria,

and EPCC16 sites, are all maintained independently by different teams, using different

technologies (Cells and OpenNebula). There is no capability for transferring virtual

machines between sites – even though EPCC and Inria sites are using the same plat-

form i.e. OpenNebula, but a virtual machine cannot be transferred between them.

However, there is a common broker that can be used to manage virtual machines on

multiple sites. This broker

We evaluated a scenario where there are two 3-tier systems; the first system has

version number 1, running on the EPCC BonFIRE site, and being used by a number of

clients; the second system has version number 2, is running on the Inria BonFIRE site,

and being tested by the engineers. Since the second system has passed all tests, then

we would like to relocate this version to the EPCC site to replace the older system.

Figure 6.39 illustrates these current and desired states.

Although the software is deployed independently on different VMs, the relocation

process must satisfy some global constraints due to service dependencies. In addition,

we do not want to disturb any usage of the service by the clients during the process.

15Hewlett-Packard Laboratory
16The Edinburgh Parallel Computing Center

220 Chapter 6. Evaluation

&OLHQWV&OLHQWV&OLHQWV

90
$SDFKH

:RUGSUHVV:HE��Y��:RUGSUHVV:HE��Y��
$SDFKH
90

:RUGSUHVV:HE��Y��
$SDFKH
90

$SDFKH/%
90

0\64/
90

:RUGSUHVV'%��Y��

:RUGSUHVV:HE��Y��
$SDFKH
90

(3&&

90
$SDFKH

:RUGSUHVV:HE��Y��:RUGSUHVV:HE��Y��
$SDFKH
90

:RUGSUHVV:HE��Y��
$SDFKH
90

$SDFKH/%
90

0\64/
90

:RUGSUHVV'%��Y��

:RUGSUHVV:HE��Y��
$SDFKH
90

,15,$

&OLHQWV&OLHQWV&OLHQWV

90
$SDFKH

:RUGSUHVV:HE��Y��:RUGSUHVV:HE��Y��
$SDFKH
90

:RUGSUHVV:HE��Y��
$SDFKH
90

$SDFKH/%
90

0\64/
90

:RUGSUHVV'%��Y��

:RUGSUHVV:HE��Y��
$SDFKH
90

(3&&,15,$

Current State Desired State

Figure 6.39: The current state (left), and the desired state (right) of the 3-tier system.

Thus, the following global constraint should be maintained:

• The web services depend on the database service: whenever the web services

are running then the database service must be running as well;

• The load balancer depends on the web services: whenever the load balancer is

running then the web service must be running as well;

• All clients should always refer to a running server.

1 vm_epcc isa VM { created = true; in_cloud = proxy.epcc; }
2 vm_inria isa VM { created = false; }
3 main {
4 proxy isa Machine {
5 sfpAddress = "172.18.240.38"
6 // proxy component for EPCC site
7 epcc isa Bonfire { location = "uk-epcc"
8 experiment = "autocloud"; }
9 // proxy component for INRIA site

10 inria isa Bonfire { location = "fr-inria"
11 experiment = "autocloud"; }
12 }
13 pc isa Client {
14 sfpAddress = "172.18.240.39"
15 refer = vm21.apache // change reference to the latest system
16 }
17 // "virtually" move machines of the latest system to EPCC
18 // site by setting "in_cloud" with value "proxy.epcc"
19 vm21 extends vm_epcc {
20 apache isa Apache {
21 running = true
22 is_load_balancer = true
23 lb_members = [vm22.apache]
24 }
25 }

6.4. Planning and Deploying Configuration Changes in Practice 221

26 vm22 extends vm_epcc {
27 apache isa Apache { running = true; }
28 wp_web isa WordpressWeb {
29 version = 2
30 installed = true
31 http = vm12.apache
32 database = vm23.wp_db
33 }
34 }
35 vm23 extends vm_epcc {
36 mysql isa Mysql { running = true }
37 wp_db isa WordpressDB {
38 version = 2
39 installed = true
40 mysql = vm23.mysql
41 }
42 }
43 // delete machines of old system
44 vm11 extends vm_inria {
45 apache isa Apache { }
46 }
47 vm12 extends vm_inria {
48 apache isa Apache { }
49 wp_web isa WordpressWeb { }
50 }
51 vm13 extends vm_inria {
52 mysql isa Mysql { }
53 wp_db isa WordpressDB { }
54 }
55 // global constraints
56 global {
57 // pc always refers to a running system
58 pc.refer.running = true
59 // dependencies between services
60 if vm11.apache.running = true then vm12.apache.running = true
61 if vm12.apache.running = true then vm13.mysql.running = true
62 if vm21.apache.running = true then vm22.apache.running = true
63 if vm22.apache.running = true then vm23.mysql.running = true
64 }
65 }

To implement this relocation, we defined the desired state and the global constraints

in SFP. The above specification is an example of the desired state with one application

service. By submitting this specification to the Nuri master, a workflow is generated

as shown in figure 6.41. The execution of this plan relocated the new version system

from Inria to EPCC, configured the client to use this system, and finally deleted the

old version system from EPCC site. The plan execution did not violate any global

constraints – the services were started in the correct order, and the client was redirected

to use another running service before the old one was deleted.

In the experiments, we used a virtual machine with 2 CPUs and 2 GB RAM in

222 Chapter 6. Evaluation

BonFIRE
HPLabs Site

BonFIRE
EPCC Site

BonFIRE
Inria Site

BonFIRE Broker

 HTTP RESTful API

BonFIRE Portal
Nuri Agent

EPCC

Nuri Master

VM

Nuri Agent

VM

Nuri Agent

SFP
Specs

Nuri Agent
Inria

Figure 6.40: Nuri on BonFIRE infrastructure.

EPCC site as the Nuri master. Each BonFIRE site was managed by an instance of proxy

module. This proxy module uses a Restfully Ruby library [bon, 2014] to communicate

to the BonFIRE broker for getting VM’s status, creating or deleting VM on a particular

site. There are two nuri agents, one has an instance of proxy module controlling Inria

site, while another has an instance controlling EPCC site. For the managed system,

we used small (1 CPU, 1 GB RAM) instance VMs. For the software stack, we used

unmodified Debian Squeeze 10G v5, Apache Web Server, MySQL Database Server,

and the Wordpress Content Management System (CMS). Every software is controlled

by a Nuri module, except Wordpress CMS which is controlled by two modules: 1)

WordpressWeb that controls the application layer, 2) WordpressDB that controls the

database layer. Separating the application and database layers of Wordpress CMS into

two modules allows us to increase (or decrease) the number of application services

which the system can have. There is another Nuri module which manages the client

configuration. This module is capable of redirecting service references in a similar way

to a DNS lookup17that is by modifying the IP address registered in a particular file. All

VMs involved in the experiment were connected to the BonFIRE WAN network.

Figure 6.40 illustrates the interactions between Nuri agents and BonFIRE broker

17Commonly, a Linux operating system has file /etc/resolve.conf that contains a list of IP ad-
dresses of DNS servers which can be used to resolve a host name.

6.4. Planning and Deploying Configuration Changes in Practice 223

and infrastructures. For example, for creating a VM, the Nuri agent will find the im-

plementation of action create_vm in the proxy module. Invoking this action would

send a request to the BonFIRE broker through Restfully library. This library encapsu-

lates the request into an HTTP POST request where the specification of the VM (e.g.

the number of CPU) is serialized into JSON data format and sent to the broker web

service. The agent will then wait until the broker sends a response that the VM is

ready. Whenever such response is received, the agent asks the broker to send the VM’s

configuration data such as its IP address. This IP address is used by the agent to install

a software package of Nuri agent into the new VM using remote shell execution and

start the Nuri agent daemon – note that the experiment used an unmodified VM image

which does not have an installed Nuri agent software package. Finally, the agent sends

a broadcast message containing the new VM’s name and IP address to other agents to

notify them that a new agent has been running. This allows other agents to update their

agent-database and perform a peer-to-peer communication with the new agent.

We ran several experiments using the same scenario but with different number of

services of application layer (WordpressWeb). Each experiment was run five times

and then took the average time. Figure 6.42a illustrates the comparison of the plan-

ning and the choreographing times between various numbers of services. Notice that

the planning and the choreographing times are linear to the number of application ser-

vices, where the latter is slightly higher than the former due to an additional process

to translate the workflows to the BSig models. For the largest case where each system

has 5 application services, the partial-order workflows were generated in average 6.37

seconds, while the BSig model were generated in average 7.03 seconds.

Figure 6.42b shows the comparison of the deployment times between the orches-

tration and the choreography techniques. For the largest case, the desired state were

achieved in average 1487.56 and 1539.30 seconds using the orchestration and the

choreography respectively. This shows that there is no significant difference on the

deployment times of both techniques. However, the orchestration requires the master

to be on our private infrastructure, or on any cloud, and it must be always connected

to the VMs. Obviously, if there is a network outage on the master’s infrastructure,

then the whole execution will be stopped. But in choreography, the execution of the

system on a healthy cloud infrastructure will continue even if there is a problem on the

master’s infrastructure.

The orchestration execution time is near optimal since the Nuri orchestrator im-

plements a partial-order execution algorithm – it allows mutually exclusive actions to

224 Chapter 6. Evaluation

proxy.inria.delete_vm(vm=vm21) proxy.inria.delete_vm(vm=vm22) proxy.inria.delete_vm(vm=vm23)

proxy.epcc.create_vm(vm=vm21) proxy.epcc.create_vm(vm=vm22) proxy.epcc.create_vm(vm=vm23)

vm21.apache.install

vm21.apache.enable_load_balancer

vm22.apache.install

vm22.apache.install_php_module

vm22.apache.install_php_mysql_module

vm22.wp_web.install

vm23.mysql.install

vm23.mysql.start

vm23.wp_db.install

vm22.apache.start

vm21.apache.start

vm21.apache.set_lb_members(vm22)

pc.redirect(s=vm21.apache)

proxy.inria.delete_vm(vm=vm11) proxy.inria.delete_vm(vm=vm12) proxy.inria.delete_vm(vm=vm13)

Figure 6.41: The generated workflow for the system with one application service.

a) b)

●

●

●

●

●

1 (3) 2 (4) 3 (5) 4 (6) 5 (7)

0
200
400
600
800

1000
1200
1400
1600

Total Application Services (Total VMs) per system

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
on

ds
)

● Orchestration
Choreography

●

●

●

●

●

1 (3) 2 (4) 3 (5) 4 (6) 5 (7)

0

1

2

3

4

5

6

7

8

Total Application Services (Total VMs) per system

Pl
an

ni
ng

 T
im

e
(in

 s
ec

on
ds

) ● Planning
Choreographing

Figure 6.42: The planning (a) and the execution (b) times with various number of appli-

cation services (per system).

be executed in parallel. This enabled the orchestrator to send the execution requests

of mutually exclusive actions to agents simultaneously, for example: installing a soft-

ware package on different machines. Hence, the target agents can execute the actions

in parallel. A similar thing was achieved when we used the choreography technique.

Since every agent has its own goals and actions, then the agents can then select their

appropriate action simultaneously. If the actions are mutually exclusive, these agents

6.4. Planning and Deploying Configuration Changes in Practice 225

will execute the actions in parallel. However, figure 6.42 shows an unexpected result:

the execution time is linear with the number of VMs. We received a confirmation from

the EPCC site owner that there is an issue on OpenNebula platform used by EPCC and

Inria sites i.e. the storage manager could only create two VM images in parallel.

Network latency between Nuri master and agents can affect the deployment time.

However, during experiments, we found that the BonFIRE WAN network is very stable

and fast18. In addition, the sizes of messages which are sent from Nuri master to

agents or between the agents are small – the size of message that contains an action

description sent by Nuri master is less than 500 bytes, while the size of message than

contains remote preconditions sent by one to another agent is less than 200 bytes. Each

VM has a network interface whose throughput is 12.5 MB/seconds. Thus, the overall

overhead communication is quite low.

Self-Healing

We also tested the self-healing capability of the agent when the choreography mode

was activated. We manually stopped or uninstalled some services on a running system

randomly and checked the state of the system several minutes later. Since every agent

continuously executed the cooperative reactive regressions (CRR) algorithm, then it

checked the state of the VM periodically and detected such errors as goal flaws, se-

lected and invoked some local actions (it may request remote preconditions to other

agents) to fix the flaws.

In another, we manually deleted some random VMs on the EPCC site. In this

case, since the cloud proxy of EPCC site was continously executing its local model,

it detected that those VMs did not exist. Based on the model, it then automatically

created some VMs to replace the deleted ones. After installing and starting Nuri agent

on each new VM, the cloud proxy agent sent the appropriate local model to be executed

on the new VM. After several minutes, all deleted VMs had been replaced with the

new ones and the system was again stable. These results show that the choreography

technique enables the agents to automatically fix a drift from the desired state by using

the existing BSig model, distributively, and without any re-choreographing process.

18It required less than 50ms to ping from one to another VM either in the same or different sites.

226 Chapter 6. Evaluation

6.4.5 Discussion

The current implementation of Nuri orchestrator is using a progressive execution algo-

rithm. On the other hand, in choreography mode, the agents are using the regression

execution algorithm (see §5.2.3) for executing a workflow. The above experiment re-

sults indicate that there is no significant difference on the execution times between

these algorithms.

On the other side, orchestration and choreography use different mechanisms to en-

able self-healing capability. Due to the progressive execution, when Nuri is in orches-

tration mode, it has to perform a re-planning in order to generate a new workflow to

fix any drift from the desired state. This re-planning is required because the previously

generated workflow is not applicable when using progressive execution algorithm –

the current state of the system is not the same with the initial state of the workflow. On

the other hand, whenever Nuri is in choreography mode, the agents can try to re-use

the existing actions of BSig model using regression execution to fix the drift. If they

fail, then Nuri performs re-choreographing19. Thus, choreography mode can help Nuri

to reduce the necessity to perform re-planning. Of course, it is possible to implement

the regression execution algorithm for single agent (see figure 5.7) into Nuri orches-

trator. This allows the orchestration mode of Nuri to re-use the actions of previously

generated workflow in order to fix the drift.

If we are comparing the above execution times, we might not see any benefit on

using choreography comparing to orchestration. This is mainly because the planning

time is not significant – for example, workflows of the above experiments can be gen-

erated in less than 10 seconds (see figure 6.34, 6.37 and 6.41). Hence, re-planning

only contributes a very small percentage of time required to “heal” the system which

involves both planning and plan execution. We suspect that choreography will perform

better than orchestration for a larger or more complex system.

On the other hand, choreography offers a better resilient comparing to orchestra-

tor. This is because whenever we use orchestration and there is a problem on Nuri

master, such as network outage, then any drift on the managed system cannot be fixed

immediately – it has to wait until the problem has been resolved. This is not the case

for choreography since the agents can automatically fix the drift even though there is

a problem on Nuri master.

19A re-choreographing process requires re-planning.

6.4. Planning and Deploying Configuration Changes in Practice 227

6.4.6 Summary

To summarise, the above experiments have shown that:

• The Nuri configuration tool that implements the technique described in §4.2 can

be used in practice to generate workflows for configuring real systems;

• The choreographing times are slightly higher than the planning times due to an

extra step for translating the workflow to the BSig models;

• The deployment times using orchestration are near optimal since the Nuri gen-

erated partial-order workflows, and then executed them with a partial-order exe-

cution algorithm;

• There is no significant difference between the orchestration and the choreog-

raphy techniques. However, the orchestration execution will stop if there is a

failure on the Nuri master. But in choreography, the execution of the system on

a healthy infrastructure will continue even if there is a problem on the master’s

infrastructure.

• The choreography technique enables the agents to automatically fix a drift from

the desired state by using the existing BSig model, distributively, and without

any re-choreographing process.

Chapter 7

Conclusion

Declarative specification approach has been widely accepted as the most appropri-

ate one for managing configurations of cloud systems – it promises that the user can

explicitly specify the desired state of the system, and the tool will automatically com-

pute and execute the necessary actions to bring the system from current to this desired

state. However, this promise is yet fully accomplished by state-of-the-art practical

declarative tools because they cannot maintain necessary (ordering) constraints during

configuration changes. If they can, then the user must manually define the ordering

constraints in the specification, which is conceptually similar to imperative scripts.

This thesis has shown that the automated planner is the missing link of practical

declarative tools in order to complete the promise. By making use of the planner, the

tool can automatically generate a workflow between any two viable states, enabling

unattended reconfiguration. The workflows are guaranteed to achieve the desired state

while preserving the necessary constraints. With the choreography technique, the tool

can construct a set of reactive agents which executes the workflow without any central

controller. This enables the agents to form a self-healing system which increases its

resilience while retaining a predictable and deadlock-free workflow. The development

and the experiment results of Nuri system configuration tool, which implements this

approach, have proved that this is practically visible and scalable.

In addition, this thesis has demonstrated that the formalisation of a practical con-

figuration language is critical for finding and correcting problems with the existing

compiler, and proving necessary properties of the language. It also provides a consis-

tent, platform-independent reference for extending the language as well as developing

alternative implementations.

229

230 Chapter 7. Conclusion

7.1 Hypotheses and Contributions Revisited

Along the journey for completing the promise of declarative specification approach,

this thesis has achieved several milestones. First, it has developed the formal seman-

tics of the SmartFrog configuration language. This development has considerably in-

creased our understanding of the language, highlighted difficult areas, and identified

problems with a production compiler. It also has been a valuable guide to the develop-

ment of the language extensions and the corresponding practical compiler. This formal

semantics confirms our first contribution which is mentioned in the introduction.

In the second milestone, this thesis has been able to extend the core syntax of the

SmartFrog language to adding new features that allow the administrator to declara-

tively define a configuration specification which consists of the desired state, the ac-

tions, and the global constraints. In addition, a static-type system has been developed

to provide a type level safety which can be checked before deployment. This increases

our confidence that the specification is correct, and also helps the planner to reduce the

search space. This second milestone confirms that hypothesis 1 of this thesis has been

achieved, and also supports our second contribution.

The third milestone is the development of a domain independent technique that

compiles a planning problem with extended goals into a classical planning problem.

This technique has been tested using planning problems from International Planning

Competition. The experiment results show that the planner which implements this

technique has better planner times and coverage comparing to the MIPS-XXL planner.

This confirms the third contribution of this thesis.

In the forth milestone, this thesis has developed a technique to translate a configura-

tion task into a classical planning problem, which can be solved by a classical planner.

The evaluation results of Nuri configuration tools, that implements this technique, have

clearly shown the advantages of automated planning for cloud systems reconfiguration

– the workflows can be automatically generated between any two declarative states

within a reasonable time, enabling unattended and autonomic reconfiguration for fail-

ure recovery or other reasons. The generated workflows are guaranteed to achieve the

desired state, while preserving the necessary (ordering) constraints at every state of

reconfiguration process. This confirms hypothesis 2, and our forth contribution of this

thesis.

In the last milestone, this thesis has introduced an alternative technique for de-

ploying the configuration, which is called as choreography. This technique translates a

7.2. Future Works 231

workflow into a set of Behavioural Signature models, each of which is sent to a particu-

lar agent. The evaluations have shown that the agents, which executes the models using

the Cooperative Reactive Regression (CRR) algorithm, can autonomously execute the

workflow in a distributed way, while preserving the necessary (ordering) constraints.

This can eliminate a single point of failure, and hence increases the system’s resilience.

The evaluations have also shown that the agents can fix particular drifts from the de-

sired state without the need of re-planning. These results confirm hypothesis 3 of this

thesis, and also our fifth and sixth contributions.

7.2 Future Works

Several parts of this thesis can lead us to some potential future works. First, although

the static-type system of SFP language has been presented, but the type checking func-

tions for the global constraints and actions have yet been defined. The absence of these

functions makes the current compiler unable to detect type-errors in constraints or ac-

tions’ preconditions/effects. A common treatment whenever there is a type-error is

that the compiler assumes that the whole specification is incorrect, and then immedi-

ately stops the compilation process. However, we could have a different behaviour for

handling this kind of errors. For actions, it is possible that the compiler automatically

removes all actions with type-error from the specification. For constraints, the com-

piler can assume that the valuation value of a constraint with type-error is false. With

these alternative treatments, the compiler can still produce the final output of the spec-

ification, but with warnings. A further study on these different semantics is required to

determine which one is better in practice.

Previous section has mentioned advantages on formalising the semantics of a prac-

tical configuration language. We believe that similar advantages can be also obtained

by applying the same process (see figure 3.3) on the others e.g. Puppet language [Pup-

pet Labs, 2014]. The impact of this work can be very significant, in particular if the

language is used to define specifications of critical systems. Unfortunately, most of

practical configuration languages are lack of good documentations. The author of

the language may not want to share critical information due to some restrictions e.g.

copyright. Another challenge is that the language itself is evolving from one to another

version during the formalisation process, where some new features are added and some

others are deprecated. Thus, it is essential for us to find a stable core features of the

language as the starting point of this process. Afterwards, we can expand the semantics

232 Chapter 7. Conclusion

by adding other features one-by-one.

Basically, Nuri is using a classical planner as its low-level solver. Since this clas-

sical planner is using FDR, then all planning problems must be converted to it. FDR

has help researcher in developing powerful heuristic techniques which significantly in-

crease the performance of the planners. Unfortunately, it only allows the goal or the

preconditions of actions to be expressed as a conjunction of atoms. This restriction

implies that any complex formula of goal or preconditions must be converted into an

equivalent Disjunctive Normal Form (DNF) formula. Unfortunately, this conversion

can produce an exponential size of DNF formula comparing to the original one. One

of possible solution to this issue is that we can allow a complex formula to be used in

the goal or the preconditions. This avoids the explosion of the size of the DNF formula

since the conversion is not required. However, there is a new challenge here: a new

heuristic technique must be developed – indeed existing heuristics cannot be used due

to different representations. But, it is possible to adapt the principles of the heuristics

to this new representation.

Although the regression execution can increase the viability of a plan, but it is pos-

sible that the current of the system is not equal to the initial or intermediate states of

the plan. This will invalidate the existing Behavioural Signature model which implies

a re-planning process. One of approaches for this problem would be increasing the

validity of the model by embedding multiple plans into a single model. Although this

may likely arise a livelock or deadlock situation in the model, but incremental merging

process with automated livelock/deadlock detection could be used to avoid this situa-

tion. Another approach is reformulating the problem as a non-deterministic planning

problem, and then using a non-classical planner to generate a conditional plan e.g.

[Bertoli et al., 2001, Hoffmann and Brafman, 2005]. More recently, [Albore et al.,

2009, Bonet and Geffner, 2011, Brafman and Shani, 2012] describe very interesting

techniques – they exploit classical planners to generate such conditional plan by trans-

lating the problem into a classical one under several restrictions. It would be interesting

to get the comparison results of these two approaches.

There is a case where a centralised planning approach, which is used in this thesis,

cannot be applied. One of them is when the system is consisting two subsystems,

each of which is controlled by two different organisations who do not trust each other,

and there is no such a trusty third party. Solving a planning problem in this kind of

situations requires a new approach i.e. multiagent planning. There are various types of

multiagent planning problems. Perhaps the most relevant with reconfiguration problem

7.2. Future Works 233

of cloud systems would be Shared-Goal Multiagent Planning – there is a single goal

where the objective is to find a plan that achieves the goal without taking into account

actions performed by each agent [Crosby, 2014]. Some early results show that the

heuristic used to solve this problem has a promising performance. Further investigation

is needed to evaluate this approach using practical reconfiguration problems.

Appendix A

SmartFrog Language

A.1 Concrete Syntax

SF ::= B

B ::= A B | ε
A ::= R V

P ::= R | { B }

PS ::= P (, P)∗ | ε
V ::= BV ; | LR ; | extends PS

R ::= I (: I)∗

DR ::= DATA R

LR ::= R

Vec ::= [(BV (, BV)∗ | ε)]

Null ::= NULL

Bool ::= true | false
BV ::= Bool | Num | Str | DR | Vec | Null

A.2 Proofs

Proposition 3.13. Assume s ∈ S has unique identifiers i.e. ∀〈idi,vi〉,〈id j,v j〉 ∈ s . i 6=
j ⇒ idi 6= id j. Then operation s′ = put(s, id,v) always returns s′ ∈ S that also has

unique identifiers i.e. ∀〈id′i ,v′i〉,〈id′j,v′j〉 ∈ s′ . i 6= j⇒ id′i 6= id′j.

Proof. The proof is given by induction.

Basis: Show that the statement holds for s =∅S .

Since s =∅S , then the first equation in definition 3.12 is applied.

235

236 Appendix A. SmartFrog Language

s′ = put(∅S , id,v)

= 〈id,v〉 :: ∅S
Since there is only one pair in s′, then it is valid to say that s′ has a unique identifier.

Thus, it has been shown that the statement holds for s =∅S .

Inductive step: Show that the statement holds for any arbitrary s ∈ S where s has

unique identifiers. There are two cases:

• First is when s = 〈id,vs〉 :: sp. Since this will match with the second equation of

definition 3.12, then it must be shown that s′ = 〈id,v〉 :: sp has unique identifiers.

The equation has checked that the identifier of the first element of s is equal with

id. Since s has unique identifiers, then id will not in sp. This, it is valid to state

that s′ = 〈id,v〉 :: sp has unique identifiers.

• Second is when s= 〈ids,vs〉 :: sp. Since this will match with the third equation of

definition 3.12, then it must be shown that s′= 〈ids,vs〉 :: put(sp, id,v) has unique

identifiers. Since s has unique identifiers then sp also has unique identifiers.

Because the statement holds, then operator put(sp, id,v) will return a store has

unique identifiers. ids itself will never exist in the store returned by put(sp, id,v)

because ids is not exist in sp (if it doest exist, then the second equation will be

called, not the third). This, it is valid to state that s′ = 〈ids,vs〉 :: put(sp, id,v) has

unique identifiers.

Since the basis and the inductive step have been performed, then by mathematical

induction, the statement in proposition 3.13 holds.

Proposition 3.16. Assume s ∈ S then ∀r ∈ R . find(s,r) 6=⊥⇒ find(s,prefix(r)) ∈ S .

Proof. There are three cases that needs to be considered. The first case is when

r = ∅I where prefix(r) = ∅I. Based on the first equation of definition 3.15, since

find(s,∅I) = ∅S then find(s,prefix(r)) = ∅S . Because ∅S ∈ S , then it is valid to say

that the statement holds for r =∅I.

The second case is when r = id :: ∅I where prefix(r) = ∅I. It is similar with the

first case where find(s,prefix(r)) = ∅S and ∅S ∈ S . Thus it is valid to say that the

statement holds for r = id :: ∅I.

The last case is when r = id1 :: ... :: idn−1 :: idn :: ∅I,n≥ 2 where prefix(r) = id1 ::

... :: idn−1 :: ∅I. Without loosing any details, we can rewrite find(s,r) = find(find(id1 ::

... :: idn−1 :: ∅I), idn :: ∅I). Since find(s,r) 6= ⊥ then the first branch’s condition of

A.2. Proofs 237

the last equation in definition 3.15 should be satisfied i.e. s.1 = id ∧ s.2 ∈ S , where

find(id1 :: ... :: idn−1 :: ∅I) = s.2. Because the condition ensures that s.2 ∈ S , then it is

valid to say that the statement holds for r = id1 :: ... :: idn−1 :: idn :: ∅I,n≥ 2.

Since the statement holds for every case then the statement in proposition 3.16

holds.

Proposition 3.18. Assume s ∈ S where s has unique identifiers, and ∀si ⊂S s : si

has unique identifiers. Then operation s′ = bind(s, id :: r,v) always returns s′ that has

unique identifiers and ∀s j ⊂S s′ : s j has unique identifiers as well.

Proof. The proof is given by induction.

Basis: Show that the statement holds for any arbitrary store s and value v, while the

target reference id :: ∅I.

For this case, the second equation of definition 3.14 is applied, where: s′= put(s, id,v).

Since the premise specifies that s has unique identifiers, then based on proposition 3.13

put(s, id,v) always returns a store that has unique identifiers for any arbitrary id and

v. Thus, it has been shown that the statement holds for any arbitrary s and v, and the

target reference r = id :: ∅I.

Inductive step: Show that the statement holds for any arbitrary store s, value v, and

reference id :: r. There are two cases:

• First is when s = 〈id,vs〉 :: sp. Since this will match the forth equation of defini-

tion 3.14, then there are two branches:

– When vs ∈ S , it must be then shown that s′ = 〈id,bind(vs,r,v)〉 :: sp has

unique identifiers. Since the premise states that s has unique identifiers,

then no element in sp whose identifier is equal to id. Based on the premise

as well, vs has unique identifiers because vs is the sub-store of s. Since the

proof is basing on the statement that holds for any arbitrary s, v, and id :: r,

then bind(vs,r,v) always returns a store that has unique identifiers. Thus,

it is valid to state that s′ = 〈id,bind(vs,r,v)〉 :: sp has unique identifiers and

∀s j ⊂S s′ also has unique identifiers.

– When vs 6∈ S , then it can be ignored since it always produces err1.

• Second is when s = 〈ids,vs〉 :: sp. Since this will match the fifth equation of

definition 3.14, then it must be shown that s′ = 〈ids,vs〉 :: bind(sp, id :: r,v) has

238 Appendix A. SmartFrog Language

unique identifiers. Based on the premise, no element in sp whose identifier is

equal to id. Since the proof is basing on the statement that holds for any arbitrary

s, v, and id :: r, then bind(sp, id :: r,v) always returns a store that has unique

identifiers, each of which is not equal to id. This, it is valid to state that s′ =

〈ids,vs〉 :: bind(sp, id :: r,v) has unique identifiers and ∀s j ⊂S s′ also has unique

identifiers.

Since the basis and the inductive step have been performed, then by mathematical

induction, the statement in proposition 3.18 holds.

Proposition 3.21. If function resolvelink is used to resolve a cyclic link reference, then

it will produce an error.

Proof. The proof is by contradiction. Assume that we have a series of cyclic link ref-

erence: 〈link,r1〉, ...,〈link,rn〉,〈link,r1〉 where resolve(s,ns,ri) = 〈link,ri+1〉 for i < n

and resolve(s,ns,rn)= 〈link,r1〉, ri,ns∈R ,s∈ S . We assume that resolvelink(s,〈link,r1〉)
will not produce an error. Based on definition 3.20, the accumulator of the next recur-

sive call is the union of the current accumulator and the current link reference. Thus,

the series of the value of accumulator (acc) inside function resolvelink in the evalua-

tion of resolvelink(s,〈link,r1〉) will be:

r = r1,acc = {}
r = r2,acc = {r1}
...

r = rn,acc = {r j| j ∈ 1..(n−1)}
r = r1,acc = {r j| j ∈ 1..n}
Above shows that at the last run, when r = r1 then r ∈ acc, which produces err4 due

to the first conditional branch of resolvelink, a contradiction to the assumption. Thus,

it is shown that the statement holds.

Appendix B

SFP Language

B.1 Concrete Syntax

The following is the concrete syntax of SFP language.

SFP ::= SC

SC ::= schema S SC | global G SC | A SC | ε
B ::= global G B | A B | ε
A ::= def R Ac | R TV V

P ::= (extends)? R | { B }

PS ::= P (, P)∗ | ε
V ::= = BV eos | LR eos | SSo PS

R ::= I (. I)∗

DR ::= R

LR ::= R

Vec ::= [(BV (, BV)∗ | ε)]

Null ::= null

Bool ::= true | false
BV ::= Bool | Num | Str | DR | Vec | Null

S ::= I SSs { B }

SSo ::= isa SS | ε
SSs ::= extends SS | ε
TV ::= : T | ε
eos ::= ; | "\n"

239

240 Appendix B. SFP Language

T ::= [] τ | * τ | τ
τ ::= bool | num | str | obj | I

G ::= And

And ::= { (CS)∗ }

Or ::= ((CS)∗)

CS ::= Eq | Ne | Not | Im | And | Or |ML

Eq ::= R = BV eos

Ne ::= R != BV eos

Im ::= if And then And

Not ::= not CS

ML ::= R in Vec eos

Ac ::= (Pa) { Co Cd Ef }

Pa ::= (I : T)∗

Co ::= cost = Num eos | ε
Cd ::= And | ε
Ef ::= { (R = BV eos)+ }

Appendix C

Examples of System Configuration

Task in SFP and PDDL

C.1 System-A

C.1.1 Cloud Deployment Scenario

C.1.1.1 SFP

The followings are the resource models, the current state, the desired state and the

global constraints of a configuration task in SFP for deploying system-A (from scratch)

that has 2 subsystems, each of which has 2 application services.

1 // file: model.sfp
2 schema Cloud {
3 def create_vm(vm: VM) {
4 condition { vm.in_cloud = null; vm.running = false; }
5 effect { vm.in_cloud = this; }
6 }
7 }
8 schema VM {
9 in_cloud : *Cloud = null; running = false;

10 def start {
11 condition { this.in_cloud != null; this.running = false; }
12 effect { this.running = true; }
13 }
14 def stop {
15 condition { this.in_cloud != null; this.running = true; }
16 effect { this.running = false; }
17 }
18 }
19 schema Service {
20 installed = false;
21 running = false;
22 def start {

241

242 Appendix C. Examples of System Configuration Task in SFP and PDDL

23 condition { this.installed = true; this.running = false; }
24 effect { this.running = true; }
25 }
26 def stop {
27 condition { this.installed = true; this.running = true; }
28 effect { this.running = false; }
29 }
30 def install {
31 condition { this.installed = false; this.running = false; }
32 effect { this.installed = true; }
33 }
34 def uninstall {
35 condition { this.installed = true; this.running = false; }
36 effect { this.installed = false; }
37 }
38 }
39 schema LoadBalancer extends Service { }
40 schema AppService extends Service { }

1 // SFP current state
2 include "model.sfp";
3 main {
4 cloud0 isa Cloud { }
5 vm0 isa VM {
6 in_cloud = null;
7 lb isa LoadBalancer { }
8 }
9 vm0_0_0 isa VM {

10 in_cloud = null;
11 app isa AppService { }
12 }
13 vm0_0_1 extends vm0_0_0
14 vm0_1_0 extends vm0_0_0
15 vm0_1_1 extends vm0_0_0
16 }

1 // SFP desired state
2 include "model.sfp";
3 main {
4 cloud0 isa Cloud { }
5 vm0 isa VM {
6 in_cloud = cloud0;
7 running = true;
8 lb isa LoadBalancer { installed = true; running = true; }
9 }

10 vm0_0_0 isa VM {
11 in_cloud = cloud0;
12 running = true;
13 app isa AppService { installed = true; running = true; }
14 }
15 vm0_0_1 extends vm0_0_0
16 vm0_1_0 extends vm0_0_0
17 vm0_1_1 extends vm0_0_0
18 global constraint { // SFP global constraints
19 if vm0.lb.installed = true; then vm0.running = true;

C.1. System-A 243

20 if vm0_0_0.app.installed = true; then vm0_0_0.running = true;
21 if vm0.lb.running = true; then vm0_0_0.app.running = true;
22 if vm0_0_1.app.installed = true; then vm0_0_1.running = true;
23 if vm0.lb.running = true; then vm0_0_1.app.running = true;
24 if vm0_1_0.app.installed = true; then vm0_1_0.running = true;
25 if vm0_0_0.app.running = true; then vm0_1_0.app.running = true;
26 if vm0_1_1.app.installed = true; then vm0_1_1.running = true;
27 if vm0_0_1.app.running = true; then vm0_1_1.app.running = true;
28 }
29 }

C.1.1.2 PDDL

The following are the planning domain and problem in PDDL for deploying system-A

(from scratch) that has 2 subsystems, each of which has 2 application services.

1 // PDDL Domain
2 (define (domain SystemA)
3 (:requirements :strips :typing :adl)
4 (:types runnable - object
5 cloud vm service - runnable
6 loadbalancer appservice - service)
7 (:predicates
8 (running ?r - runnable)
9 (in_cloud ?v - vm ?c - cloud)

10 (installed ?s - service))
11 (:action create -vm
12 :parameters (?c - cloud ?v - vm)
13 :precondition (and (not (exists (?cx - cloud)
14 (in_cloud ?v ?cx))))
15 :effect (and (in_cloud ?v ?c)))
16 (:action start -vm
17 :parameters (?v - vm)
18 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
19 (not (running ?v)))
20 :effect (and (running ?v)))
21 (:action stop -vm
22 :parameters (?v - vm)
23 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
24 (running ?v))
25 :effect (and (not (running ?v))))
26 (:action install -service
27 :parameters (?s - service)
28 :precondition (and (not (installed ?s)) (not (running ?s)))
29 :effect (and (installed ?s)))
30 (:action uninstall -service
31 :parameters (?s - service)
32 :precondition (and (installed ?s) (not (running ?s)))
33 :effect (and (not (installed ?s))))
34 (:action start -service
35 :parameters (?s - service)
36 :precondition (and (installed ?s) (not (running ?s)))
37 :effect (and (running ?s)))
38 (:action stop -service

244 Appendix C. Examples of System Configuration Task in SFP and PDDL

39 :parameters (?s - service)
40 :precondition (and (installed ?s) (running ?s))
41 :effect (and (not (running ?s))))
42)

1 ;; PDDL task for 2 subsystems , each has 2 services
2 (define (problem p22)
3 (:domain SystemA)
4 (:objects
5 cloud0 - cloud
6 vm0 vm0_0_0 vm0_0_1 vm0_1_0 vm0_1_1 - vm
7 vm0_lb - service
8 vm0_0_0_app vm0_0_1_app vm0_1_0_app vm0_1_1_app - service)
9 ;; current state

10 (:init (running cloud0))
11 ;; desired state
12 (:goal (and
13 (in_cloud vm0 cloud0) (running vm0)
14 (installed vm0_lb) (running vm0_lb)
15 (in_cloud vm0_0_0 cloud0) (running vm0_0_0)
16 (installed vm0_0_0_app) (running vm0_0_0_app)
17 (in_cloud vm0_0_1 cloud0) (running vm0_0_1)
18 (installed vm0_0_1_app) (running vm0_0_1_app)
19 (in_cloud vm0_1_0 cloud0) (running vm0_1_0)
20 (installed vm0_1_0_app) (running vm0_1_0_app)
21 (in_cloud vm0_1_1 cloud0) (running vm0_1_1)
22 (installed vm0_1_1_app) (running vm0_1_1_app)))
23 ;; global constraints
24 (:constraints (and
25 (always (imply (installed vm0_lb) (running vm0)))
26 (always (imply (installed vm0_0_0_app) (running vm0_0_0)))
27 (always (imply (running vm0_lb) (running vm0_0_0_app)))
28 (always (imply (installed vm0_0_1_app) (running vm0_0_1)))
29 (always (imply (running vm0_lb) (running vm0_0_1_app)))
30 (always (imply (installed vm0_1_0_app) (running vm0_1_0)))
31 (always (imply (running vm0_0_0_app) (running vm0_1_0_app)))
32 (always (imply (installed vm0_1_1_app) (running vm0_1_1)))
33 (always (imply (running vm0_0_1_app) (running vm0_1_1_app)))
34))
35)

C.1.2 Cloud Burst Scenario

C.1.2.1 SFP

The following are the resource models, the current state, the desired state and the

global constraints of a configuration task in SFP for migrating system-A from one

(cloud0) to another cloud (cloud1). In this case, system-A has 2 subsystems, each

has 2 application services, and one load balancer.

1 // file: model.sfp

C.1. System-A 245

2 schema Runnable {
3 running = false;
4 def start {
5 condition { this.running = false; }
6 effect { this.running = true; }
7 }
8 def stop {
9 condition { this.running = true; }

10 effect { this.running = false; }
11 }
12 }
13 schema Cloud {
14 def migrate(vm: VM, target: Cloud) {
15 condition { vm.in_cloud = this; vm.running = false; }
16 effect { vm.in_cloud = target; }
17 }
18 }
19 schema VM extends Runnable {
20 in_cloud: *Cloud = null;
21 }
22 schema LoadBalancer extends Runnable { }
23 schema AppService extends Runnable { }
24 schema Client {
25 refer: *LoadBalancer = null;
26 def redirect(s: LoadBalancer) {
27 condition { s.running = true; }
28 effect { this.refer = s; }
29 }
30 }

1 include "model.sfp";
2 // current state
3 main {
4 cloud0 isa Cloud { }
5 cloud1 isa Cloud { }
6 vm0 isa VM {
7 in_cloud = cloud0; // on cloud0
8 running = true;
9 web isa LoadBalancer { running = true; }

10 }
11 vm0_0_0 isa VM {
12 in_cloud = cloud0; // on cloud0
13 running = true;
14 app isa AppService { running = true; }
15 }
16 vm0_0_1 extends vm0_0_0
17 vm0_1_0 extends vm0_0_0
18 vm0_1_1 extends vm0_0_0
19 vm1 isa VM {
20 in_cloud = cloud0; // on cloud0
21 web isa LoadBalancer { }
22 }
23 vm1_0_0 isa VM {
24 in_cloud = cloud0; // on cloud0
25 app isa AppService { }
26 }

246 Appendix C. Examples of System Configuration Task in SFP and PDDL

27 vm1_0_1 extends vm1_0_0
28 vm1_1_0 extends vm1_0_0
29 vm1_1_1 extends vm1_0_0
30 client0 isa Client { refer = vm0.web; }
31 }

1 include "model.sfp";
2 // desired state
3 main {
4 cloud0 isa Cloud { }
5 cloud1 isa Cloud { }
6 vm0 isa VM {
7 in_cloud = cloud1; // move to cloud1
8 running = true;
9 web isa LoadBalancer { running = true; }

10 }
11 vm0_0_0 isa VM {
12 in_cloud = cloud1; // move to cloud1
13 running = true;
14 app isa AppService { running = true; }
15 }
16 vm0_0_1 extends vm0_0_0
17 vm0_1_0 extends vm0_0_0
18 vm0_1_1 extends vm0_0_0
19 vm1 isa VM {
20 in_cloud = cloud0; // stay on cloud0
21 web isa LoadBalancer { }
22 }
23 vm1_0_0 isa VM {
24 in_cloud = cloud0; // stay on cloud0
25 app isa AppService { }
26 }
27 vm1_0_1 extends vm1_0_0
28 vm1_1_0 extends vm1_0_0
29 vm1_1_1 extends vm1_0_0
30 client0 isa Client { refer = vm0.web; }
31 global constraint {
32 if vm0.web.running = true; then vm0.running = true;
33 if vm1.web.running = true; then vm1.running = true;
34 if vm0_0_0.app.running = true; then vm0_0_0.running = true;
35 if vm0.web.running = true; then vm0_0_0.app.running = true;
36 if vm1_0_0.app.running = true; then vm1_0_0.running = true;
37 if vm1.web.running = true; then vm1_0_0.app.running = true;
38 if vm0_0_1.app.running = true; then vm0_0_1.running = true;
39 if vm0.web.running = true; then vm0_0_1.app.running = true;
40 if vm1_0_1.app.running = true; then vm1_0_1.running = true;
41 if vm1.web.running = true; then vm1_0_1.app.running = true;
42 if vm0_1_0.app.running = true; then vm0_1_0.running = true;
43 if vm0_0_0.app.running = true; then vm0_1_0.app.running = true;
44 if vm1_1_0.app.running = true; then vm1_1_0.running = true;
45 if vm1_0_0.app.running = true; then vm1_1_0.app.running = true;
46 if vm0_1_1.app.running = true; then vm0_1_1.running = true;
47 if vm0_0_1.app.running = true; then vm0_1_1.app.running = true;
48 if vm1_1_1.app.running = true; then vm1_1_1.running = true;
49 if vm1_0_1.app.running = true; then vm1_1_1.app.running = true;
50 if client0.refer = vm0.web; then vm0.web.running = true;

C.1. System-A 247

51 if client0.refer = vm1.web; then vm1.web.running = true;
52 }
53 }

C.1.2.2 PDDL

The following are the planning domain and problem in PDDL for migrating system-A

from one (cloud0) to another cloud (cloud1). In this case, system-A has 2 subsys-

tems, each has 2 application services, and one load balancer.

1 (define (domain CloudDeploy)
2 (:requirements :strips :typing :adl)
3 (:types runnable client - object
4 cloud vm service - runnable
5 loadbalancer appservice - service)
6 (:predicates
7 (running ?r - runnable)
8 (in_cloud ?v - vm ?c - cloud)
9 (refer ?c - client ?lb - loadbalancer))

10 (:action redirect
11 :parameters (?from ?to - loadbalancer ?c - client)
12 :precondition (and (running ?to) (refer ?c ?from))
13 :effect (and (refer ?c ?to) (not (refer ?c ?from))))
14 (:action migrate
15 :parameters (?from ?to - cloud ?v - vm)
16 :precondition (and (not (running ?v)) (in_cloud ?v ?from)
17 (not (in_cloud ?v ?to)))
18 :effect (and (not (in_cloud ?v ?from)) (in_cloud ?v ?to)))
19 (:action start -vm
20 :parameters (?v - vm)
21 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
22 (not (running ?v)))
23 :effect (and (running ?v)))
24 (:action stop -vm
25 :parameters (?v - vm)
26 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
27 (running ?v))
28 :effect (and (not (running ?v))))
29 (:action start -service
30 :parameters (?s - service)
31 :precondition (and (not (running ?s)))
32 :effect (and (running ?s)))
33 (:action stop -service
34 :parameters (?s - service)
35 :precondition (and (running ?s))
36 :effect (and (not (running ?s))))
37)

1 (define (problem pcd)
2 (:domain CloudDeploy)
3 (:objects
4 cloud0 cloud1 - cloud
5 vm0 vm1 vm0_0_0 vm1_0_0 vm0_0_1 vm1_0_1

248 Appendix C. Examples of System Configuration Task in SFP and PDDL

6 vm0_1_0 vm1_1_0 vm0_1_1 vm1_1_1 - vm
7 vm0_lb vm1_lb - loadbalancer
8 vm0_0_0_app vm1_0_0_app vm0_0_1_app vm1_0_1_app vm0_1_0_app
9 vm1_1_0_app vm0_1_1_app vm1_1_1_app - service

10 client0 - client
11)
12 (:init
13 (in_cloud vm0 cloud0) (running vm0) (running vm0_lb)
14 (in_cloud vm1 cloud0) (in_cloud vm0_0_0 cloud0)
15 (running vm0_0_0) (running vm0_0_0_app)
16 (in_cloud vm1_0_0 cloud0) (in_cloud vm0_0_1 cloud0)
17 (running vm0_0_1) (running vm0_0_1_app)
18 (in_cloud vm1_0_1 cloud0) (in_cloud vm0_1_0 cloud0)
19 (running vm0_1_0) (running vm0_1_0_app)
20 (in_cloud vm1_1_0 cloud0) (in_cloud vm0_1_1 cloud0)
21 (running vm0_1_1) (running vm0_1_1_app)
22 (in_cloud vm1_1_1 cloud0) (refer client0 vm0_lb)
23)
24 (:goal (and
25 (in_cloud vm0 cloud1) (running vm0)
26 (running vm0_lb) (in_cloud vm1 cloud0)
27 (not (running vm1)) (not (running vm1_lb))
28 (in_cloud vm0_0_0 cloud1) (running vm0_0_0)
29 (running vm0_0_0_app) (in_cloud vm1_0_0 cloud0)
30 (not (running vm1_0_0)) (not (running vm1_0_0_app))
31 (in_cloud vm0_0_1 cloud1) (running vm0_0_1)
32 (running vm0_0_1_app) (in_cloud vm1_0_1 cloud0)
33 (not (running vm1_0_1)) (not (running vm1_0_1_app))
34 (in_cloud vm0_1_0 cloud1) (running vm0_1_0)
35 (running vm0_1_0_app) (in_cloud vm1_1_0 cloud0)
36 (not (running vm1_1_0)) (not (running vm1_1_0_app))
37 (in_cloud vm0_1_1 cloud1) (running vm0_1_1)
38 (running vm0_1_1_app) (in_cloud vm1_1_1 cloud0)
39 (not (running vm1_1_1)) (not (running vm1_1_1_app))
40 (refer client0 vm0_lb)))
41 (:constraints (and
42 (always (imply (running vm0_lb) (running vm0)))
43 (always (imply (running vm1_lb) (running vm1)))
44 (always (imply (running vm0_0_0_app) (running vm0_0_0)))
45 (always (imply (running vm0_lb) (running vm0_0_0_app)))
46 (always (imply (running vm1_0_0_app) (running vm1_0_0)))
47 (always (imply (running vm1_lb) (running vm1_0_0_app)))
48 (always (imply (running vm0_0_1_app) (running vm0_0_1)))
49 (always (imply (running vm0_lb) (running vm0_0_1_app)))
50 (always (imply (running vm1_0_1_app) (running vm1_0_1)))
51 (always (imply (running vm1_lb) (running vm1_0_1_app)))
52 (always (imply (running vm0_1_0_app) (running vm0_1_0)))
53 (always (imply (running vm0_0_0_app) (running vm0_1_0_app)))
54 (always (imply (running vm1_1_0_app) (running vm1_1_0)))
55 (always (imply (running vm1_0_0_app) (running vm1_1_0_app)))
56 (always (imply (running vm0_1_1_app) (running vm0_1_1)))
57 (always (imply (running vm0_0_1_app) (running vm0_1_1_app)))
58 (always (imply (running vm1_1_1_app) (running vm1_1_1)))
59 (always (imply (running vm1_0_1_app) (running vm1_1_1_app)))
60 (always (imply (refer client0 vm0_lb) (running vm0_lb)))
61 (always (imply (refer client0 vm1_lb) (running vm1_lb)))))

C.2. System-B 249

62)

C.2 System-B

C.2.1 Cloud Deployment Scenario

C.2.1.1 SFP

The following are the resource models, the current state, the desired state and the global

constraints of a configuration task in SFP for deploying system-B (from scratch) that

has 2 layers, each of which has 2 application services.

1 schema Cloud {
2 def create_vm(vm: VM) {
3 condition { vm.in_cloud = null; vm.running = false; }
4 effect { vm.in_cloud = this; }
5 }
6 }
7 schema VM {
8 in_cloud: *Cloud = null;
9 running = false;

10 def start {
11 condition { this.in_cloud != null; this.running = false; }
12 effect { this.running = true; }
13 }
14 def stop {
15 condition { this.in_cloud != null; this.running = true; }
16 effect { this.running = false; }
17 }
18 }
19 schema Service {
20 installed = false;
21 running = false;
22 def start {
23 condition { this.installed = true; this.running = false; }
24 effect { this.running = true; }
25 }
26 def stop {
27 condition { this.installed = true; this.running = true; }
28 effect { this.running = false; }
29 }
30 def install {
31 condition { this.installed = false; this.running = false; }
32 effect { this.installed = true; }
33 }
34 def uninstall {
35 condition { this.installed = true; this.running = false; }
36 effect { this.installed = false; }
37 }
38 }
39 schema LoadBalancer extends Service { }

250 Appendix C. Examples of System Configuration Task in SFP and PDDL

40 schema MainLoadBalancer extends LoadBalancer { }
41 schema AppService extends Service { }

1 include "model.sfp";
2 // current state
3 main {
4 cloud0 isa Cloud { }
5 vm0_0 isa VM {
6 in_cloud = null;
7 lb isa MainLoadBalancer { }
8 }
9 vm0_0_0 isa VM {

10 in_cloud = null;
11 app isa AppService { }
12 }
13 vm0_0_1 extends vm0_0_0
14 vm0_1 isa VM {
15 in_cloud = null;
16 lb isa LoadBalancer { }
17 }
18 vm0_1_0 extends vm0_0_0
19 vm0_1_1 extends vm0_0_0
20 }

1 include "model.sfp";
2 // desired state
3 main {
4 cloud0 isa Cloud { }
5 vm0_0 isa VM {
6 in_cloud = cloud0;
7 running = true;
8 lb isa MainLoadBalancer { installed = true; running = true; }
9 }

10 vm0_0_0 isa VM {
11 in_cloud = cloud0;
12 running = true;
13 app isa AppService { installed = true; running = true; }
14 }
15 vm0_0_1 extends vm0_0_0
16 vm0_1 isa VM {
17 in_cloud = cloud0;
18 running = true;
19 lb isa LoadBalancer { installed = true; running = true; }
20 }
21 vm0_1_0 extends vm0_0_0
22 vm0_1_1 extends vm0_0_0
23 global constraint { // global constraints
24 if vm0_0.lb.installed = true; then vm0_0.running = true;
25 if vm0_0.lb.running = true; then vm0_0_0.app.running = true;
26 if vm0_0_0.app.installed = true; then vm0_0_0.running = true;
27 if vm0_0.lb.running = true; then vm0_0_1.app.running = true;
28 if vm0_0_1.app.installed = true; then vm0_0_1.running = true;
29 if vm0_1.lb.installed = true; then vm0_1.running = true;
30 if vm0_0_0.app.running = true; then vm0_1.lb.running = true;
31 if vm0_1.lb.running = true; then vm0_1_0.app.running = true;

C.2. System-B 251

32 if vm0_1_0.app.installed = true; then vm0_1_0.running = true;
33 if vm0_0_1.app.running = true; then vm0_1.lb.running = true;
34 if vm0_1.lb.running = true; then vm0_1_1.app.running = true;
35 if vm0_1_1.app.installed = true; then vm0_1_1.running = true;
36 }
37 }

C.2.1.2 PDDL

The following are the planning domain and problem in PDDL for deploying system-B

(from scratch) that has 2 layers, each of which has 2 application services.
1 (define (domain CloudDeploy)
2 (:requirements :strips :typing :adl)
3 (:types runnable - object
4 cloud vm service - runnable
5 loadbalancer appservice - service)
6 (:predicates
7 (running ?r - runnable)
8 (in_cloud ?v - vm ?c - cloud)
9 (installed ?s - service))

10 (:action create -vm
11 :parameters (?c - cloud ?v - vm)
12 :precondition (and (not (exists (?cx - cloud)
13 (in_cloud ?v ?cx))))
14 :effect (and (in_cloud ?v ?c)))
15 (:action start -vm
16 :parameters (?v - vm)
17 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
18 (not (running ?v)))
19 :effect (and (running ?v)))
20 (:action stop -vm
21 :parameters (?v - vm)
22 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
23 (running ?v))
24 :effect (and (not (running ?v))))
25 (:action install -service
26 :parameters (?s - service)
27 :precondition (and (not (installed ?s)) (not (running ?s)))
28 :effect (and (installed ?s)))
29 (:action uninstall -service
30 :parameters (?s - service)
31 :precondition (and (installed ?s) (not (running ?s)))
32 :effect (and (not (installed ?s))))
33 (:action start -service
34 :parameters (?s - service)
35 :precondition (and (installed ?s) (not (running ?s)))
36 :effect (and (running ?s)))
37 (:action stop -service
38 :parameters (?s - service)
39 :precondition (and (installed ?s) (running ?s))
40 :effect (and (not (running ?s))))
41)

252 Appendix C. Examples of System Configuration Task in SFP and PDDL

1 (define (problem pcd)
2 (:domain CloudDeploy)
3 (:objects
4 cloud0 - cloud
5 vm0_0 vm0_0_0 vm0_0_1 vm0_1 vm0_1_0 vm0_1_1 - vm
6 vm0_0_lb vm0_1_lb - loadbalancer
7 vm0_0_0_app vm0_0_1_app vm0_1_0_app vm0_1_1_app - service
8)
9 (:init (running cloud0))

10 (:goal (and
11 (in_cloud vm0_0 cloud0) (running vm0_0)
12 (installed vm0_0_lb) (running vm0_0_lb)
13 (in_cloud vm0_0_0 cloud0) (running vm0_0_0)
14 (installed vm0_0_0_app) (running vm0_0_0_app)
15 (in_cloud vm0_0_1 cloud0) (running vm0_0_1)
16 (installed vm0_0_1_app) (running vm0_0_1_app)
17 (in_cloud vm0_1 cloud0) (running vm0_1)
18 (installed vm0_1_lb) (running vm0_1_lb)
19 (in_cloud vm0_1_0 cloud0) (running vm0_1_0)
20 (installed vm0_1_0_app) (running vm0_1_0_app)
21 (in_cloud vm0_1_1 cloud0) (running vm0_1_1)
22 (installed vm0_1_1_app) (running vm0_1_1_app)))
23 (:constraints (and
24 (always (imply (installed vm0_0_lb) (running vm0_0)))
25 (always (imply (running vm0_0_lb) (running vm0_0_0_app)))
26 (always (imply (installed vm0_0_0_app) (running vm0_0_0)))
27 (always (imply (running vm0_0_lb) (running vm0_0_1_app)))
28 (always (imply (installed vm0_0_1_app) (running vm0_0_1)))
29 (always (imply (installed vm0_1_lb) (running vm0_1)))
30 (always (imply (running vm0_0_0_app) (running vm0_1_lb)))
31 (always (imply (running vm0_1_lb) (running vm0_1_0_app)))
32 (always (imply (installed vm0_1_0_app) (running vm0_1_0)))
33 (always (imply (running vm0_0_1_app) (running vm0_1_lb)))
34 (always (imply (running vm0_1_lb) (running vm0_1_1_app)))
35 (always (imply (installed vm0_1_1_app) (running vm0_1_1)))
36))
37)

C.2.2 Cloud Burst Scenario

C.2.2.1 SFP

The following are the resource models, the current state, the desired state and the global

constraints of a configuration task in SFP for migrating system-B from one (cloud0)

to another cloud (cloud1). In this case, system-B has 2 layers, each has 2 application

services.

1 // file: model.sfp
2 schema Runnable {
3 running = false;
4 def start {

C.2. System-B 253

5 condition { this.running = false; }
6 effect { this.running = true; }
7 }
8 def stop {
9 condition { this.running = true; }

10 effect { this.running = false; }
11 }
12 }
13 schema Cloud {
14 def migrate(vm: VM, target: Cloud) {
15 condition { vm.in_cloud = this; vm.running = false; }
16 effect { vm.in_cloud = target; }
17 }
18 }
19 schema VM extends Runnable {
20 in_cloud: *Cloud = null;
21 }
22 schema LoadBalancer extends Runnable { }
23 schema MainLoadBalancer extends LoadBalancer { }
24 schema AppService extends Runnable { }
25 schema Client {
26 refer: *MainLoadBalancer = null;
27 def redirect(s: MainLoadBalancer) {
28 condition { s.running = true; }
29 effect { this.refer = s; }
30 }
31 }

1 include "model.sfp";
2 // current state
3 main {
4 cloud0 isa Cloud { }
5 cloud1 isa Cloud { }
6 // main system
7 vm0_0 isa VM {
8 in_cloud = cloud0; // on the first cloud
9 running = true;

10 lb isa MainLoadBalancer { running = true; }
11 }
12 vm0_0_0 isa VM {
13 in_cloud = cloud0; // on the first cloud
14 running = true;
15 app isa AppService { running = true; }
16 }
17 vm0_0_1 extends vm0_0_0
18 vm0_1 isa VM {
19 in_cloud = cloud0; // on the first cloud
20 running = true;
21 lb isa LoadBalancer { running = true; }
22 }
23 vm0_1_0 extends vm0_0_0
24 vm0_1_1 extends vm0_0_0
25 // backup system
26 vm1_0 isa VM {
27 in_cloud = cloud0;
28 lb isa MainLoadBalancer { }

254 Appendix C. Examples of System Configuration Task in SFP and PDDL

29 }
30 vm1_0_0 isa VM {
31 in_cloud = cloud0;
32 app isa AppService { }
33 }
34 vm1_0_1 extends vm1_0_0
35 vm1_1 isa VM {
36 in_cloud = cloud0;
37 lb isa LoadBalancer { }
38 }
39 vm1_1_0 extends vm1_0_0
40 vm1_1_1 extends vm1_0_0
41 client0 isa Client { refer = vm0_0.lb; }
42 }

1 include "model.sfp";
2 // desired state
3 main {
4 cloud0 isa Cloud { }
5 cloud1 isa Cloud { }
6 // main system
7 vm0_0 isa VM {
8 in_cloud = cloud1; // migrate to cloud1
9 running = true;

10 lb isa MainLoadBalancer { running = true; }
11 }
12 vm0_0_0 isa VM {
13 in_cloud = cloud1; // migrate to cloud1
14 running = true;
15 app isa AppService { running = true; }
16 }
17 vm0_0_1 extends vm0_0_0
18 vm0_1 isa VM {
19 in_cloud = cloud1; // migrate to cloud1
20 running = true;
21 lb isa LoadBalancer { running = true; }
22 }
23 vm0_1_0 extends vm0_0_0
24 vm0_1_1 extends vm0_0_0
25 // backup system
26 vm1_0 isa VM {
27 in_cloud = cloud0;
28 lb isa MainLoadBalancer { }
29 }
30 vm1_0_0 isa VM {
31 in_cloud = cloud0;
32 app isa AppService { }
33 }
34 vm1_0_1 extends vm1_0_0
35 vm1_1 isa VM {
36 in_cloud = cloud0;
37 lb isa LoadBalancer { }
38 }
39 vm1_1_0 extends vm1_0_0
40 vm1_1_1 extends vm1_0_0
41 client0 isa Client { refer = vm0_0.lb; }

C.2. System-B 255

42 global constraint {
43 if vm0_0.lb.running = true; then vm0_0.running = true;
44 if vm1_0.lb.running = true; then vm1_0.running = true;
45 if vm0_0.lb.running = true; then vm0_0_0.app.running = true;
46 if vm1_0.lb.running = true; then vm1_0_0.app.running = true;
47 if vm0_0_0.app.running = true; then vm0_0_0.running = true;
48 if vm1_0_0.app.running = true; then vm1_0_0.running = true;
49 if vm0_0.lb.running = true; then vm0_0_1.app.running = true;
50 if vm1_0.lb.running = true; then vm1_0_1.app.running = true;
51 if vm0_0_1.app.running = true; then vm0_0_1.running = true;
52 if vm1_0_1.app.running = true; then vm1_0_1.running = true;
53 if vm0_1.lb.running = true; then vm0_1.running = true;
54 if vm1_1.lb.running = true; then vm1_1.running = true;
55 if vm0_1.lb.running = true; then vm0_1_0.app.running = true;
56 if vm1_1.lb.running = true; then vm1_1_0.app.running = true;
57 if vm0_1_0.app.running = true; then vm0_1_0.running = true;
58 if vm1_1_0.app.running = true; then vm1_1_0.running = true;
59 if vm0_0_0.app.running = true; then vm0_1.lb.running = true;
60 if vm1_0_0.app.running = true; then vm1_1.lb.running = true;
61 if vm0_1.lb.running = true; then vm0_1_1.app.running = true;
62 if vm1_1.lb.running = true; then vm1_1_1.app.running = true;
63 if vm0_1_1.app.running = true; then vm0_1_1.running = true;
64 if vm1_1_1.app.running = true; then vm1_1_1.running = true;
65 if vm0_0_1.app.running = true; then vm0_1.lb.running = true;
66 if vm1_0_1.app.running = true; then vm1_1.lb.running = true;
67 if client0.refer = vm0_0.lb; then vm0_0.lb.running = true;
68 if client0.refer = vm1_0.lb; then vm1_0.lb.running = true;
69 }
70 }

C.2.2.2 PDDL

The following are the planning domain and problem in PDDL for migrating system-B

from one (cloud0) to another cloud (cloud1). In this case, system-B has 2 layers,

each has 2 application services, and one load balancer.

1 (define (domain CloudDeploy)
2 (:requirements :strips :typing :adl)
3 (:types runnable client - object
4 cloud vm service - runnable
5 loadbalancer appservice - service
6 mainloadbalancer - loadbalancer
7)
8 (:predicates
9 (running ?r - runnable)

10 (in_cloud ?v - vm ?c - cloud)
11 (refer ?c - client ?lb - mainloadbalancer)
12)
13 (:action redirect
14 :parameters (?from ?to - mainloadbalancer ?c - client)
15 :precondition (and (running ?to) (refer ?c ?from))
16 :effect (and (refer ?c ?to) (not (refer ?c ?from))))
17 (:action migrate

256 Appendix C. Examples of System Configuration Task in SFP and PDDL

18 :parameters (?from ?to - cloud ?v - vm)
19 :precondition (and (not (running ?v)) (in_cloud ?v ?from)
20 (not (in_cloud ?v ?to)))
21 :effect (and (not (in_cloud ?v ?from)) (in_cloud ?v ?to)))
22 (:action start -vm
23 :parameters (?v - vm)
24 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
25 (not (running ?v)))
26 :effect (and (running ?v)))
27 (:action stop -vm
28 :parameters (?v - vm)
29 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
30 (running ?v))
31 :effect (and (not (running ?v))))
32 (:action start -service
33 :parameters (?s - service)
34 :precondition (and (not (running ?s)))
35 :effect (and (running ?s)))
36 (:action stop -service
37 :parameters (?s - service)
38 :precondition (and (running ?s))
39 :effect (and (not (running ?s))))
40)

1 (define (problem pcd)
2 (:domain CloudDeploy)
3 (:objects
4 cloud0 cloud1 - cloud
5 vm0_0 vm1_0 vm0_0_0 vm1_0_0 vm0_0_1 vm1_0_1
6 vm0_1 vm1_1 vm0_1_0 vm1_1_0 vm0_1_1 vm1_1_1 - vm
7 vm0_0_lb vm1_0_lb - mainloadbalancer
8 vm0_1_lb vm1_1_lb - loadbalancer
9 vm0_0_0_app vm1_0_0_app vm0_0_1_app vm1_0_1_app

10 vm0_1_0_app vm1_1_0_app vm0_1_1_app - service
11 vm1_1_1_app - service
12 client0 - client
13)
14 (:init
15 (in_cloud vm0_0 cloud0) (running vm0_0)
16 (running vm0_0_lb) (in_cloud vm1_0 cloud0)
17 (in_cloud vm0_0_0 cloud0) (running vm0_0_0)
18 (running vm0_0_0_app) (in_cloud vm1_0_0 cloud0)
19 (in_cloud vm0_0_1 cloud0) (running vm0_0_1)
20 (running vm0_0_1_app) (in_cloud vm1_0_1 cloud0)
21 (in_cloud vm0_1 cloud0) (running vm0_1)
22 (running vm0_1_lb) (in_cloud vm1_1 cloud0)
23 (in_cloud vm0_1_0 cloud0) (running vm0_1_0)
24 (running vm0_1_0_app) (in_cloud vm1_1_0 cloud0)
25 (in_cloud vm0_1_1 cloud0) (running vm0_1_1)
26 (running vm0_1_1_app) (in_cloud vm1_1_1 cloud0)
27 (refer client0 vm0_0_lb)
28)
29 (:goal (and
30 (in_cloud vm0_0 cloud1) (running vm0_0)
31 (running vm0_0_lb) (in_cloud vm1_0 cloud0)
32 (not (running vm1_0)) (not (running vm1_0_lb))

C.2. System-B 257

33 (in_cloud vm0_0_0 cloud1) (running vm0_0_0)
34 (running vm0_0_0_app) (in_cloud vm1_0_0 cloud0)
35 (not (running vm1_0_0)) (not (running vm1_0_0_app))
36 (in_cloud vm0_0_1 cloud1) (running vm0_0_1)
37 (running vm0_0_1_app) (in_cloud vm1_0_1 cloud0)
38 (not (running vm1_0_1)) (not (running vm1_0_1_app))
39 (in_cloud vm0_1 cloud1) (running vm0_1)
40 (running vm0_1_lb) (in_cloud vm1_1 cloud0)
41 (not (running vm1_1)) (not (running vm1_1_lb))
42 (in_cloud vm0_1_0 cloud1) (running vm0_1_0)
43 (running vm0_1_0_app) (in_cloud vm1_1_0 cloud0)
44 (not (running vm1_1_0)) (not (running vm1_1_0_app))
45 (in_cloud vm0_1_1 cloud1) (running vm0_1_1)
46 (running vm0_1_1_app) (in_cloud vm1_1_1 cloud0)
47 (not (running vm1_1_1)) (not (running vm1_1_1_app))
48 (refer client0 vm0_0_lb)))
49 (:constraints (and
50 (always (imply (running vm0_0_lb) (running vm0_0)))
51 (always (imply (running vm1_0_lb) (running vm1_0)))
52 (always (imply (running vm0_0_lb) (running vm0_0_0_app)))
53 (always (imply (running vm1_0_lb) (running vm1_0_0_app)))
54 (always (imply (running vm0_0_0_app) (running vm0_0_0)))
55 (always (imply (running vm1_0_0_app) (running vm1_0_0)))
56 (always (imply (running vm0_0_lb) (running vm0_0_1_app)))
57 (always (imply (running vm1_0_lb) (running vm1_0_1_app)))
58 (always (imply (running vm0_0_1_app) (running vm0_0_1)))
59 (always (imply (running vm1_0_1_app) (running vm1_0_1)))
60 (always (imply (running vm0_1_lb) (running vm0_1)))
61 (always (imply (running vm1_1_lb) (running vm1_1)))
62 (always (imply (running vm0_1_lb) (running vm0_1_0_app)))
63 (always (imply (running vm1_1_lb) (running vm1_1_0_app)))
64 (always (imply (running vm0_1_0_app) (running vm0_1_0)))
65 (always (imply (running vm1_1_0_app) (running vm1_1_0)))
66 (always (imply (running vm0_0_0_app) (running vm0_1_lb)))
67 (always (imply (running vm1_0_0_app) (running vm1_1_lb)))
68 (always (imply (running vm0_1_lb) (running vm0_1_1_app)))
69 (always (imply (running vm1_1_lb) (running vm1_1_1_app)))
70 (always (imply (running vm0_1_1_app) (running vm0_1_1)))
71 (always (imply (running vm1_1_1_app) (running vm1_1_1)))
72 (always (imply (running vm0_0_1_app) (running vm0_1_lb)))
73 (always (imply (running vm1_0_1_app) (running vm1_1_lb)))
74 (always (imply (refer client0 vm0_0_lb) (running vm0_0_lb)))
75 (always (imply (refer client0 vm1_0_lb) (running vm1_0_lb)))
76))
77)

258 Appendix C. Examples of System Configuration Task in SFP and PDDL

C.3 System-C

C.3.1 Cloud Deployment Scenario

C.3.1.1 SFP

The following are the resource models, the current state, the desired state and the global

constraints of a configuration task in SFP for deploying system-C (from scratch) that

has 10 application services and 1 main service.

1 // file: model.sfp
2 schema Cloud {
3 def create_vm(vm: VM) {
4 condition { vm.in_cloud = null; vm.running = false; }
5 effect { vm.in_cloud = this; }
6 }
7 }
8 schema VM {
9 in_cloud: *Cloud = null;

10 running = false;
11 def start {
12 condition { this.in_cloud != null; this.running = false; }
13 effect { this.running = true; }
14 }
15 def stop {
16 condition { this.in_cloud != null; this.running = true; }
17 effect { this.running = false; }
18 }
19 }
20 schema Service {
21 installed = false;
22 running = false;
23 def start {
24 condition { this.installed = true; this.running = false; }
25 effect { this.running = true; }
26 }
27 def stop {
28 condition { this.installed = true; this.running = true; }
29 effect { this.running = false; }
30 }
31 def install {
32 condition { this.installed = false; this.running = false; }
33 effect { this.installed = true; }
34 }
35 def uninstall {
36 condition { this.installed = true; this.running = false; }
37 effect { this.installed = false; }
38 }
39 }
40 schema AppService extends Service { }
41 schema MainAppService extends AppService { }

1 include "model.sfp";

C.3. System-C 259

2 // current state
3 main {
4 cloud0 isa Cloud { }
5 vm0 isa VM {
6 in_cloud = null;
7 lb isa MainAppService { }
8 }
9 vm0_0 isa VM {

10 in_cloud = null;
11 app isa AppService { }
12 }
13 vm0_1 extends vm0_0
14 vm0_2 extends vm0_0
15 vm0_3 extends vm0_0
16 vm0_4 extends vm0_0
17 vm0_5 extends vm0_0
18 vm0_6 extends vm0_0
19 vm0_7 extends vm0_0
20 vm0_8 extends vm0_0
21 vm0_9 extends vm0_0
22 }

1 include "model.sfp";
2 // desired state
3 main {
4 cloud0 isa Cloud { }
5 vm0 isa VM {
6 in_cloud = cloud0;
7 running = true;
8 lb isa MainAppService { installed = true; running = true; }
9 }

10 vm0_0 isa VM {
11 in_cloud = cloud0;
12 running = true;
13 app isa AppService { installed = true; running = true; }
14 }
15 vm0_1 extends vm0_0
16 vm0_2 extends vm0_0
17 vm0_3 extends vm0_0
18 vm0_4 extends vm0_0
19 vm0_5 extends vm0_0
20 vm0_6 extends vm0_0
21 vm0_7 extends vm0_0
22 vm0_8 extends vm0_0
23 vm0_9 extends vm0_0
24 global constraint {
25 if vm0.lb.installed = true; then vm0.running = true;
26 if vm0.lb.running = true; then vm0_0.app.running = true;
27 if vm0_0.app.installed = true; then vm0_0.running = true;
28 if vm0_1.app.installed = true; then vm0_1.running = true;
29 if vm0_2.app.installed = true; then vm0_2.running = true;
30 if vm0_3.app.installed = true; then vm0_3.running = true;
31 if vm0_4.app.installed = true; then vm0_4.running = true;
32 if vm0_5.app.installed = true; then vm0_5.running = true;
33 if vm0_6.app.installed = true; then vm0_6.running = true;
34 if vm0_7.app.installed = true; then vm0_7.running = true;

260 Appendix C. Examples of System Configuration Task in SFP and PDDL

35 if vm0_8.app.installed = true; then vm0_8.running = true;
36 if vm0_9.app.installed = true; then vm0_9.running = true;
37 if vm0_0.app.running = true; then vm0_1.app.running = true;
38 if vm0_0.app.running = true; then vm0_4.app.running = true;
39 if vm0_0.app.running = true; then vm0_5.app.running = true;
40 if vm0_0.app.running = true; then vm0_6.app.running = true;
41 if vm0_1.app.running = true; then vm0_8.app.running = true;
42 if vm0_1.app.running = true; then vm0_2.app.running = true;
43 if vm0_1.app.running = true; then vm0_6.app.running = true;
44 if vm0_1.app.running = true; then vm0_7.app.running = true;
45 if vm0_2.app.running = true; then vm0_9.app.running = true;
46 if vm0_2.app.running = true; then vm0_3.app.running = true;
47 if vm0_3.app.running = true; then vm0_4.app.running = true;
48 if vm0_3.app.running = true; then vm0_5.app.running = true;
49 if vm0_4.app.running = true; then vm0_8.app.running = true;
50 if vm0_4.app.running = true; then vm0_5.app.running = true;
51 if vm0_4.app.running = true; then vm0_6.app.running = true;
52 if vm0_5.app.running = true; then vm0_8.app.running = true;
53 if vm0_5.app.running = true; then vm0_9.app.running = true;
54 if vm0_5.app.running = true; then vm0_7.app.running = true;
55 if vm0_6.app.running = true; then vm0_8.app.running = true;
56 if vm0_6.app.running = true; then vm0_9.app.running = true;
57 if vm0_6.app.running = true; then vm0_7.app.running = true;
58 if vm0_7.app.running = true; then vm0_8.app.running = true;
59 }
60 }

C.3.1.2 PDDL

The following are the planning domain and problem in PDDL for deploying system-C

(from scratch) that has 10 application services and 1 main service.

1 (define (domain CloudDeploy)
2 (:requirements :strips :typing :adl)
3 (:types runnable - object
4 cloud vm service - runnable
5 appservice - service
6 mainappservice - appservice)
7 (:predicates
8 (running ?r - runnable)
9 (in_cloud ?v - vm ?c - cloud)

10 (installed ?s - service))
11 (:action create -vm
12 :parameters (?c - cloud ?v - vm)
13 :precondition (and (not (exists (?cx - cloud)
14 (in_cloud ?v ?cx))))
15 :effect (and (in_cloud ?v ?c)))
16 (:action start -vm
17 :parameters (?v - vm)
18 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
19 (not (running ?v)))
20 :effect (and (running ?v)))
21 (:action stop -vm
22 :parameters (?v - vm)

C.3. System-C 261

23 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
24 (running ?v))
25 :effect (and (not (running ?v))))
26 (:action install -service
27 :parameters (?s - service)
28 :precondition (and (not (installed ?s)) (not (running ?s)))
29 :effect (and (installed ?s)))
30 (:action uninstall -service
31 :parameters (?s - service)
32 :precondition (and (installed ?s) (not (running ?s)))
33 :effect (and (not (installed ?s))))
34 (:action start -service
35 :parameters (?s - service)
36 :precondition (and (installed ?s) (not (running ?s)))
37 :effect (and (running ?s)))
38 (:action stop -service
39 :parameters (?s - service)
40 :precondition (and (installed ?s) (running ?s))
41 :effect (and (not (running ?s))))
42)

1 (define (problem pcd)
2 (:domain CloudDeploy)
3 (:objects
4 cloud0 - cloud
5 vm0 - mainappservice
6 vm0_0 vm0_1 vm0_2 vm0_3 vm0_4 vm0_5 vm0_6 vm0_7 vm0_8 vm0_9 - vm
7 vm0_app vm0_0_app vm0_1_app vm0_2_app vm0_3_app vm0_4_app
8 vm0_5_app vm0_6_app vm0_7_app vm0_8_app vm0_9_app - appservice)
9 (:init (running cloud0))

10 (:goal (and
11 (in_cloud vm0 cloud0) (running vm0)
12 (installed vm0_app) (running vm0_app)
13 (in_cloud vm0_0 cloud0) (running vm0_0)
14 (installed vm0_0_app) (running vm0_0_app)
15 (in_cloud vm0_1 cloud0) (running vm0_1)
16 (installed vm0_1_app) (running vm0_1_app)
17 (in_cloud vm0_2 cloud0) (running vm0_2)
18 (installed vm0_2_app) (running vm0_2_app)
19 (in_cloud vm0_3 cloud0) (running vm0_3)
20 (installed vm0_3_app) (running vm0_3_app)
21 (in_cloud vm0_4 cloud0) (running vm0_4)
22 (installed vm0_4_app) (running vm0_4_app)
23 (in_cloud vm0_5 cloud0) (running vm0_5)
24 (installed vm0_5_app) (running vm0_5_app)
25 (in_cloud vm0_6 cloud0) (running vm0_6)
26 (installed vm0_6_app) (running vm0_6_app)
27 (in_cloud vm0_7 cloud0) (running vm0_7)
28 (installed vm0_7_app) (running vm0_7_app)
29 (in_cloud vm0_8 cloud0) (running vm0_8)
30 (installed vm0_8_app) (running vm0_8_app)
31 (in_cloud vm0_9 cloud0) (running vm0_9)
32 (installed vm0_9_app) (running vm0_9_app)))
33 (:constraints (and
34 (always (imply (installed vm0_app) (running vm0)))
35 (always (imply (running vm0_app) (running vm0_0_app)))

262 Appendix C. Examples of System Configuration Task in SFP and PDDL

36 (always (imply (installed vm0_1_app) (running vm0_1)))
37 (always (imply (installed vm0_0_app) (running vm0_0)))
38 (always (imply (installed vm0_3_app) (running vm0_3)))
39 (always (imply (installed vm0_2_app) (running vm0_2)))
40 (always (imply (installed vm0_5_app) (running vm0_5)))
41 (always (imply (installed vm0_4_app) (running vm0_4)))
42 (always (imply (installed vm0_7_app) (running vm0_7)))
43 (always (imply (installed vm0_6_app) (running vm0_6)))
44 (always (imply (installed vm0_9_app) (running vm0_9)))
45 (always (imply (installed vm0_8_app) (running vm0_8)))
46 (always (imply (running vm0_1_app) (running vm0_8_app)))
47 (always (imply (running vm0_1_app) (running vm0_2_app)))
48 (always (imply (running vm0_1_app) (running vm0_7_app)))
49 (always (imply (running vm0_1_app) (running vm0_6_app)))
50 (always (imply (running vm0_0_app) (running vm0_1_app)))
51 (always (imply (running vm0_0_app) (running vm0_5_app)))
52 (always (imply (running vm0_0_app) (running vm0_4_app)))
53 (always (imply (running vm0_0_app) (running vm0_6_app)))
54 (always (imply (running vm0_3_app) (running vm0_5_app)))
55 (always (imply (running vm0_3_app) (running vm0_4_app)))
56 (always (imply (running vm0_2_app) (running vm0_9_app)))
57 (always (imply (running vm0_2_app) (running vm0_3_app)))
58 (always (imply (running vm0_5_app) (running vm0_9_app)))
59 (always (imply (running vm0_5_app) (running vm0_8_app)))
60 (always (imply (running vm0_5_app) (running vm0_7_app)))
61 (always (imply (running vm0_4_app) (running vm0_8_app)))
62 (always (imply (running vm0_4_app) (running vm0_5_app)))
63 (always (imply (running vm0_4_app) (running vm0_6_app)))
64 (always (imply (running vm0_7_app) (running vm0_8_app)))
65 (always (imply (running vm0_6_app) (running vm0_9_app)))
66 (always (imply (running vm0_6_app) (running vm0_8_app)))
67 (always (imply (running vm0_6_app) (running vm0_7_app)))
68))
69)

C.3.2 Cloud Burst Scenario

C.3.2.1 SFP

The following are the resource models, the current state, the desired state and the global

constraints of a configuration task in SFP for migrating system-C from one (cloud0)

to another cloud (cloud1). In this case, system-C has 10 application services and 1

main service.

1 // file: model.sfp
2 schema Runnable {
3 running = false;
4 def start {
5 condition { this.running = false; }
6 effect { this.running = true; }
7 }
8 def stop {

C.3. System-C 263

9 condition { this.running = true; }
10 effect { this.running = false; }
11 }
12 }
13 schema Cloud {
14 def migrate(vm: VM, target: Cloud) {
15 condition { vm.in_cloud = this; vm.running = false; }
16 effect { vm.in_cloud = target; }
17 }
18 }
19 schema VM extends Runnable {
20 in_cloud: *Cloud = null;
21 }
22 schema AppService extends Runnable { }
23 schema MainAppService extends Runnable { }
24 schema Client {
25 refer: *MainAppService = null;
26 def redirect(s: MainAppService) {
27 condition { s.running = true; }
28 effect { this.refer = s; }
29 }
30 }

1 include "model.sfp"
2 // current state
3 main {
4 cloud0 isa Cloud { }
5 cloud1 isa Cloud { }
6 // main system
7 vm0 isa VM {
8 in_cloud = cloud0;
9 running = true;

10 app isa MainAppService { running = true; }
11 }
12 vm0_0 isa VM {
13 in_cloud = cloud0;
14 running = true;
15 app isa AppService { running = true; }
16 }
17 vm0_1 extends vm0_0
18 vm0_2 extends vm0_0
19 vm0_3 extends vm0_0
20 vm0_4 extends vm0_0
21 vm0_5 extends vm0_0
22 vm0_6 extends vm0_0
23 vm0_7 extends vm0_0
24 vm0_8 extends vm0_0
25 vm0_9 extends vm0_0
26 // backup system
27 vm1 isa VM {
28 in_cloud = cloud0;
29 app isa MainAppService { }
30 }
31 vm1_0 isa VM {
32 in_cloud = cloud0;
33 app isa AppService { }

264 Appendix C. Examples of System Configuration Task in SFP and PDDL

34 }
35 vm1_1 extends vm1_0
36 vm1_2 extends vm1_0
37 vm1_3 extends vm1_0
38 vm1_4 extends vm1_0
39 vm1_5 extends vm1_0
40 vm1_6 extends vm1_0
41 vm1_7 extends vm1_0
42 vm1_8 extends vm1_0
43 vm1_9 extends vm1_0
44 // client
45 client0 isa Client { refer = vm0.app; }
46 }

1 include "model.sfp"
2 // desired state
3 main {
4 cloud0 isa Cloud { }
5 cloud1 isa Cloud { }
6 // main system
7 vm0 isa VM {
8 in_cloud = cloud1; // migrate to cloud1
9 running = true;

10 app isa MainAppService { running = true; }
11 }
12 vm0_0 isa VM {
13 in_cloud = cloud1; // migrate to cloud1
14 running = true;
15 app isa AppService { running = true; }
16 }
17 vm0_1 extends vm0_0
18 vm0_2 extends vm0_0
19 vm0_3 extends vm0_0
20 vm0_4 extends vm0_0
21 vm0_5 extends vm0_0
22 vm0_6 extends vm0_0
23 vm0_7 extends vm0_0
24 vm0_8 extends vm0_0
25 vm0_9 extends vm0_0
26 // backup system
27 vm1 isa VM {
28 in_cloud = cloud0;
29 app isa MainAppService { }
30 }
31 vm1_0 isa VM {
32 in_cloud = cloud0;
33 app isa AppService { }
34 }
35 vm1_1 extends vm1_0
36 vm1_2 extends vm1_0
37 vm1_3 extends vm1_0
38 vm1_4 extends vm1_0
39 vm1_5 extends vm1_0
40 vm1_6 extends vm1_0
41 vm1_7 extends vm1_0
42 vm1_8 extends vm1_0

C.3. System-C 265

43 vm1_9 extends vm1_0
44 // client
45 client0 isa Client { refer = vm0.app; }
46 // global constraints
47 global constraint {
48 if vm0.app.running = true; then vm0.running = true;
49 if vm1.app.running = true; then vm1.running = true;
50 if vm0.app.running = true; then vm0_0.app.running = true;
51 if vm1.app.running = true; then vm1_0.app.running = true;
52 if vm0_0.app.running = true; then vm0_0.running = true;
53 if vm1_0.app.running = true; then vm1_0.running = true;
54 if vm0_1.app.running = true; then vm0_1.running = true;
55 if vm1_1.app.running = true; then vm1_1.running = true;
56 if vm0_2.app.running = true; then vm0_2.running = true;
57 if vm1_2.app.running = true; then vm1_2.running = true;
58 if vm0_3.app.running = true; then vm0_3.running = true;
59 if vm1_3.app.running = true; then vm1_3.running = true;
60 if vm0_4.app.running = true; then vm0_4.running = true;
61 if vm1_4.app.running = true; then vm1_4.running = true;
62 if vm0_5.app.running = true; then vm0_5.running = true;
63 if vm1_5.app.running = true; then vm1_5.running = true;
64 if vm0_6.app.running = true; then vm0_6.running = true;
65 if vm1_6.app.running = true; then vm1_6.running = true;
66 if vm0_7.app.running = true; then vm0_7.running = true;
67 if vm1_7.app.running = true; then vm1_7.running = true;
68 if vm0_8.app.running = true; then vm0_8.running = true;
69 if vm1_8.app.running = true; then vm1_8.running = true;
70 if vm0_9.app.running = true; then vm0_9.running = true;
71 if vm1_9.app.running = true; then vm1_9.running = true;
72 if vm0_0.app.running = true; then vm0_1.app.running = true;
73 if vm1_0.app.running = true; then vm1_1.app.running = true;
74 if vm0_0.app.running = true; then vm0_3.app.running = true;
75 if vm1_0.app.running = true; then vm1_3.app.running = true;
76 if vm0_0.app.running = true; then vm0_4.app.running = true;
77 if vm1_0.app.running = true; then vm1_4.app.running = true;
78 if vm0_0.app.running = true; then vm0_5.app.running = true;
79 if vm1_0.app.running = true; then vm1_5.app.running = true;
80 if vm0_0.app.running = true; then vm0_7.app.running = true;
81 if vm1_0.app.running = true; then vm1_7.app.running = true;
82 if vm0_0.app.running = true; then vm0_8.app.running = true;
83 if vm1_0.app.running = true; then vm1_8.app.running = true;
84 if vm0_0.app.running = true; then vm0_9.app.running = true;
85 if vm1_0.app.running = true; then vm1_9.app.running = true;
86 if vm0_1.app.running = true; then vm0_2.app.running = true;
87 if vm1_1.app.running = true; then vm1_2.app.running = true;
88 if vm0_1.app.running = true; then vm0_5.app.running = true;
89 if vm1_1.app.running = true; then vm1_5.app.running = true;
90 if vm0_2.app.running = true; then vm0_3.app.running = true;
91 if vm1_2.app.running = true; then vm1_3.app.running = true;
92 if vm0_2.app.running = true; then vm0_7.app.running = true;
93 if vm1_2.app.running = true; then vm1_7.app.running = true;
94 if vm0_3.app.running = true; then vm0_8.app.running = true;
95 if vm1_3.app.running = true; then vm1_8.app.running = true;
96 if vm0_3.app.running = true; then vm0_9.app.running = true;
97 if vm1_3.app.running = true; then vm1_9.app.running = true;
98 if vm0_4.app.running = true; then vm0_8.app.running = true;

266 Appendix C. Examples of System Configuration Task in SFP and PDDL

99 if vm1_4.app.running = true; then vm1_8.app.running = true;
100 if vm0_4.app.running = true; then vm0_5.app.running = true;
101 if vm1_4.app.running = true; then vm1_5.app.running = true;
102 if vm0_5.app.running = true; then vm0_8.app.running = true;
103 if vm1_5.app.running = true; then vm1_8.app.running = true;
104 if vm0_5.app.running = true; then vm0_9.app.running = true;
105 if vm1_5.app.running = true; then vm1_9.app.running = true;
106 if vm0_5.app.running = true; then vm0_6.app.running = true;
107 if vm1_5.app.running = true; then vm1_6.app.running = true;
108 if client0.refer = vm0.app; then vm0.app.running = true;
109 if client0.refer = vm1.app; then vm1.app.running = true;
110 }
111 }

C.3.2.2 PDDL

The following are the planning domain and problem in PDDL for migrating system-C

from one (cloud0) to another cloud (cloud1). In this case, system-C has 10 applica-

tion services and 1 main service.

1 (define (domain CloudDeploy)
2 (:requirements :strips :typing :adl)
3 (:types runnable client - object
4 cloud vm service - runnable
5 appservice - service
6 mainappservice - appservice)
7 (:predicates
8 (running ?r - runnable)
9 (in_cloud ?v - vm ?c - cloud)

10 (refer ?c - client ?lb - mainappservice))
11 (:action redirect
12 :parameters (?from ?to - mainappservice ?c - client)
13 :precondition (and (running ?to) (refer ?c ?from))
14 :effect (and (refer ?c ?to) (not (refer ?c ?from))))
15 (:action migrate
16 :parameters (?from ?to - cloud ?v - vm)
17 :precondition (and (not (running ?v)) (in_cloud ?v ?from)
18 (not (in_cloud ?v ?to)))
19 :effect (and (not (in_cloud ?v ?from)) (in_cloud ?v ?to)))
20 (:action start -vm
21 :parameters (?v - vm)
22 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
23 (not (running ?v)))
24 :effect (and (running ?v)))
25 (:action stop -vm
26 :parameters (?v - vm)
27 :precondition (and (exists (?c - cloud) (in_cloud ?v ?c))
28 (running ?v))
29 :effect (and (not (running ?v))))
30 (:action start -service
31 :parameters (?s - service)
32 :precondition (and (not (running ?s)))
33 :effect (and (running ?s)))

C.3. System-C 267

34 (:action stop -service
35 :parameters (?s - service)
36 :precondition (and (running ?s))
37 :effect (and (not (running ?s))))
38)

1 (define (problem pcd)
2 (:domain CloudDeploy)
3 (:objects
4 cloud0 cloud1 - cloud
5 vm0 vm1 vm0_0 vm1_0 vm0_1 vm1_1 vm0_2 vm1_2 vm0_3 vm1_3
6 vm0_4 vm1_4 vm0_5 vm1_5 vm0_6 vm1_6 vm0_7 vm1_7 vm0_8
7 vm1_8 vm0_9 vm1_9 - vm
8 vm0_app vm1_app - mainappservice
9 vm0_0_app vm1_0_app vm0_1_app vm1_1_app vm0_2_app

10 vm1_2_app vm0_3_app vm1_3_app vm0_4_app vm1_4_app
11 vm0_5_app vm1_5_app vm0_6_app vm1_6_app vm0_7_app
12 vm1_7_app vm0_8_app vm1_8_app vm0_9_app vm1_9_app
13 - appservice
14 client0 - client
15)
16 (:init
17 (in_cloud vm0 cloud0)
18 (running vm0)
19 (running vm0_app)
20 (in_cloud vm1 cloud0)
21 (in_cloud vm0_0 cloud0)
22 (running vm0_0)
23 (running vm0_0_app)
24 (in_cloud vm1_0 cloud0)
25 (in_cloud vm0_1 cloud0)
26 (running vm0_1)
27 (running vm0_1_app)
28 (in_cloud vm1_1 cloud0)
29 (in_cloud vm0_2 cloud0)
30 (running vm0_2)
31 (running vm0_2_app)
32 (in_cloud vm1_2 cloud0)
33 (in_cloud vm0_3 cloud0)
34 (running vm0_3)
35 (running vm0_3_app)
36 (in_cloud vm1_3 cloud0)
37 (in_cloud vm0_4 cloud0)
38 (running vm0_4)
39 (running vm0_4_app)
40 (in_cloud vm1_4 cloud0)
41 (in_cloud vm0_5 cloud0)
42 (running vm0_5)
43 (running vm0_5_app)
44 (in_cloud vm1_5 cloud0)
45 (in_cloud vm0_6 cloud0)
46 (running vm0_6)
47 (running vm0_6_app)
48 (in_cloud vm1_6 cloud0)
49 (in_cloud vm0_7 cloud0)
50 (running vm0_7)

268 Appendix C. Examples of System Configuration Task in SFP and PDDL

51 (running vm0_7_app)
52 (in_cloud vm1_7 cloud0)
53 (in_cloud vm0_8 cloud0)
54 (running vm0_8)
55 (running vm0_8_app)
56 (in_cloud vm1_8 cloud0)
57 (in_cloud vm0_9 cloud0)
58 (running vm0_9)
59 (running vm0_9_app)
60 (in_cloud vm1_9 cloud0)
61 (refer client0 vm0_app)
62)
63 (:goal (and
64 (in_cloud vm0 cloud1)
65 (running vm0)
66 (running vm0_app)
67 (in_cloud vm1 cloud0)
68 (not (running vm1))
69 (not (running vm1_app))
70 (in_cloud vm0_0 cloud1)
71 (running vm0_0)
72 (running vm0_0_app)
73 (in_cloud vm1_0 cloud0)
74 (not (running vm1_0))
75 (not (running vm1_0_app))
76 (in_cloud vm0_1 cloud1)
77 (running vm0_1)
78 (running vm0_1_app)
79 (in_cloud vm1_1 cloud0)
80 (not (running vm1_1))
81 (not (running vm1_1_app))
82 (in_cloud vm0_2 cloud1)
83 (running vm0_2)
84 (running vm0_2_app)
85 (in_cloud vm1_2 cloud0)
86 (not (running vm1_2))
87 (not (running vm1_2_app))
88 (in_cloud vm0_3 cloud1)
89 (running vm0_3)
90 (running vm0_3_app)
91 (in_cloud vm1_3 cloud0)
92 (not (running vm1_3))
93 (not (running vm1_3_app))
94 (in_cloud vm0_4 cloud1)
95 (running vm0_4)
96 (running vm0_4_app)
97 (in_cloud vm1_4 cloud0)
98 (not (running vm1_4))
99 (not (running vm1_4_app))

100 (in_cloud vm0_5 cloud1)
101 (running vm0_5)
102 (running vm0_5_app)
103 (in_cloud vm1_5 cloud0)
104 (not (running vm1_5))
105 (not (running vm1_5_app))
106 (in_cloud vm0_6 cloud1)

C.3. System-C 269

107 (running vm0_6)
108 (running vm0_6_app)
109 (in_cloud vm1_6 cloud0)
110 (not (running vm1_6))
111 (not (running vm1_6_app))
112 (in_cloud vm0_7 cloud1)
113 (running vm0_7)
114 (running vm0_7_app)
115 (in_cloud vm1_7 cloud0)
116 (not (running vm1_7))
117 (not (running vm1_7_app))
118 (in_cloud vm0_8 cloud1)
119 (running vm0_8)
120 (running vm0_8_app)
121 (in_cloud vm1_8 cloud0)
122 (not (running vm1_8))
123 (not (running vm1_8_app))
124 (in_cloud vm0_9 cloud1)
125 (running vm0_9)
126 (running vm0_9_app)
127 (in_cloud vm1_9 cloud0)
128 (not (running vm1_9))
129 (not (running vm1_9_app))
130 (refer client0 vm0_app)
131))
132 (:constraints (and
133 (always (imply (running vm0_app) (running vm0)))
134 (always (imply (running vm1_app) (running vm1)))
135 (always (imply (running vm0_app) (running vm0_0_app)))
136 (always (imply (running vm1_app) (running vm1_0_app)))
137 (always (imply (running vm0_1_app) (running vm0_1)))
138 (always (imply (running vm1_1_app) (running vm1_1)))
139 (always (imply (running vm0_0_app) (running vm0_0)))
140 (always (imply (running vm1_0_app) (running vm1_0)))
141 (always (imply (running vm0_3_app) (running vm0_3)))
142 (always (imply (running vm1_3_app) (running vm1_3)))
143 (always (imply (running vm0_2_app) (running vm0_2)))
144 (always (imply (running vm1_2_app) (running vm1_2)))
145 (always (imply (running vm0_5_app) (running vm0_5)))
146 (always (imply (running vm1_5_app) (running vm1_5)))
147 (always (imply (running vm0_4_app) (running vm0_4)))
148 (always (imply (running vm1_4_app) (running vm1_4)))
149 (always (imply (running vm0_7_app) (running vm0_7)))
150 (always (imply (running vm1_7_app) (running vm1_7)))
151 (always (imply (running vm0_6_app) (running vm0_6)))
152 (always (imply (running vm1_6_app) (running vm1_6)))
153 (always (imply (running vm0_9_app) (running vm0_9)))
154 (always (imply (running vm1_9_app) (running vm1_9)))
155 (always (imply (running vm0_8_app) (running vm0_8)))
156 (always (imply (running vm1_8_app) (running vm1_8)))
157 (always (imply (running vm0_1_app) (running vm0_2_app)))
158 (always (imply (running vm1_1_app) (running vm1_2_app)))
159 (always (imply (running vm0_1_app) (running vm0_5_app)))
160 (always (imply (running vm1_1_app) (running vm1_5_app)))
161 (always (imply (running vm0_0_app) (running vm0_1_app)))
162 (always (imply (running vm1_0_app) (running vm1_1_app)))

270 Appendix C. Examples of System Configuration Task in SFP and PDDL

163 (always (imply (running vm0_0_app) (running vm0_3_app)))
164 (always (imply (running vm1_0_app) (running vm1_3_app)))
165 (always (imply (running vm0_0_app) (running vm0_5_app)))
166 (always (imply (running vm1_0_app) (running vm1_5_app)))
167 (always (imply (running vm0_0_app) (running vm0_4_app)))
168 (always (imply (running vm1_0_app) (running vm1_4_app)))
169 (always (imply (running vm0_0_app) (running vm0_7_app)))
170 (always (imply (running vm1_0_app) (running vm1_7_app)))
171 (always (imply (running vm0_0_app) (running vm0_9_app)))
172 (always (imply (running vm1_0_app) (running vm1_9_app)))
173 (always (imply (running vm0_0_app) (running vm0_8_app)))
174 (always (imply (running vm1_0_app) (running vm1_8_app)))
175 (always (imply (running vm0_3_app) (running vm0_9_app)))
176 (always (imply (running vm1_3_app) (running vm1_9_app)))
177 (always (imply (running vm0_3_app) (running vm0_8_app)))
178 (always (imply (running vm1_3_app) (running vm1_8_app)))
179 (always (imply (running vm0_2_app) (running vm0_3_app)))
180 (always (imply (running vm1_2_app) (running vm1_3_app)))
181 (always (imply (running vm0_2_app) (running vm0_7_app)))
182 (always (imply (running vm1_2_app) (running vm1_7_app)))
183 (always (imply (running vm0_5_app) (running vm0_9_app)))
184 (always (imply (running vm1_5_app) (running vm1_9_app)))
185 (always (imply (running vm0_5_app) (running vm0_8_app)))
186 (always (imply (running vm1_5_app) (running vm1_8_app)))
187 (always (imply (running vm0_5_app) (running vm0_6_app)))
188 (always (imply (running vm1_5_app) (running vm1_6_app)))
189 (always (imply (running vm0_4_app) (running vm0_8_app)))
190 (always (imply (running vm1_4_app) (running vm1_8_app)))
191 (always (imply (running vm0_4_app) (running vm0_5_app)))
192 (always (imply (running vm1_4_app) (running vm1_5_app)))
193 (always (imply (refer client0 vm0_app) (running vm0_app)))
194 (always (imply (refer client0 vm1_app) (running vm1_app)))
195))
196)

Bibliography

[bon, 2014] (2014). BonFIRE Restfully. http://doc.bonfire-project.eu/R4.0.5/client-
tools/restfully.html. Accessed: 2015-02-17.

[has, 2014] (2014). Haskell Language. http://haskell.org. Accessed: 2014-07-01.

[hpc, 2014] (2014). HP Cells. http://www.hpl.hp.com/open_innovation/
cloud_collaboration/projects.html. Accessed:2014-07-01.

[oca, 2014] (2014). OCaml Language. http://ocaml.org. Accessed: 2014-07-01.

[sca, 2014] (2014). Scala Language. http://scala-lang.org. Accessed: 2014-07-01.

[yam, 2014] (2014). YAML. http://www.yaml.org. Accessed: 2014-07-01.

[Albore et al., 2009] Albore, A., Palacios, H., and Geffner, H. (2009). A translation-
based approach to contingent planning. In Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 1623–1628.

[Ambite and Knoblock, 2001] Ambite, J. L. and Knoblock, C. A. (2001). Planning by
rewriting. Journal of Artificial Intelligence Research, 15:15–207.

[Anderson, 2006] Anderson, P. (2006). System Configuration, volume 14 of short top-
ics in system administration. SAGE.

[Anderson and Scobie, 2002] Anderson, P. and Scobie, A. (2002). LCFG: The next
generation. In UKUUG Winter Conference.

[Ansible Inc., 2014] Ansible Inc. (2014). Ansible. http://ansibleworks.com. Ac-
cessed: 2014-07-01.

[Bäckström, 1994] Bäckström, C. (1994). Finding least constrained plans and optimal
parallel executions is harder than we thought. In In Proceedings of the second
European Workshop on Planning, pages 46–59. IOS Press.

[Bäckström and Nebel, 1995] Bäckström, C. and Nebel, B. (1995). Complexity re-
sults for SAS+ planning. Computational Intelligence, 11(4):625–655.

[Baier and McIlraith, 2006] Baier, J. A. and McIlraith, S. (2006). Planning with tem-
porally extended goals using heuristic search. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling.

271

272 Bibliography

[Bainomugisha et al., 2013] Bainomugisha, E., Carreton, A. L., Cutsem, T. v.,
Mostinckx, S., and Meuter, W. d. (2013). A survey on reactive programming. ACM
Computing Surveys, 45(4):52:1–52:34.

[Banerjee et al., 2012] Banerjee, P., Bash, C., Friedrich, R., Goldsack, P., Huber-
man, B. A., Manley, J., Morell, L., Patel, C., Ranganathan, P., Trucco, M., and
Veitch, A. (2012). The Future of Cloud Computing: an HP Labs perspective.
http://www.hpl.hp.com/techreports/2010/HPL-2010-192.pdf (accessed: 2015-02-
15).

[Bertoli et al., 2001] Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001). Plan-
ning in nondeterministic domains under partial observability via symbolic model
checking. In Proceedings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence (IJCAI), volume 2001, pages 473–478.

[Blum and Furst, 1997a] Blum, A. and Furst, M. (1997a). Fast Planning through Plan-
ning Graph Analysis. Artificial Intelligence, 90:281–300.

[Blum and Furst, 1997b] Blum, A. L. and Furst, M. L. (1997b). Fast planning through
planning graph analysis. Artificial intelligence, 90(1):281–300.

[Bonet and Geffner, 2011] Bonet, B. and Geffner, H. (2011). Planning under partial
observability by classical replanning: Theory and experiments. In Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI).
Association for the Advancement of Artificial Intelligence (AAAI).

[Brafman and Shani, 2012] Brafman, R. I. and Shani, G. (2012). Replanning in do-
mains with partial information and sensing actions. Journal of Artificial Intelligence
Research, pages 565–600.

[Bylander, 1994] Bylander, T. (1994). The computational complexity of propositional
strips planning. Artificial Intelligence, 69(1):165–204.

[Canonical Ltd., 2014] Canonical Ltd. (2014). Juju. http://juju.ubuntu.com. Ac-
cessed: 2014-07-01.

[Crosby, 2014] Crosby, M. D. (2014). Multiagent Classical Planning. PhD thesis,
School of Informatics, The University of Edinburgh.

[Dantas et al., 2006] Dantas, A., Santos, F., Germoglio, G., Oliveira, M., Cirne, W.,
Brasileiro, F., Rafaeli, S., Saikoski, K., and Milojicic, D. (2006). An initial as-
sessment of cddlm. In Proceedings of the HP-OpenView University Association
Workshop.

[Delaet and Joosen, 2010] Delaet, T. and Joosen, W. (2010). A survey of system con-
figuration tools. In Proceedings of the 24th Large Installation System Administra-
tion Conference (LISA ’10). Usenix Association.

Bibliography 273

[Desai et al., 2003] Desai, N., Lusk, A., Bradshaw, R., and Evard, R. (2003). BCFG:
A Configuration Management Tool for Heterogeneous Environments. In Proceed-
ings of IEEE International Conference on Cluster Computing. IEEE Computer So-
ciety.

[Di Cosmo et al., 2012] Di Cosmo, R., Zacchiroli, S., and Zavattaro, G. (2012). To-
wards a formal component model for the cloud. In Software Engineering and For-
mal Methods, pages 156–171. Springer.

[Edelkamp, 2006] Edelkamp, S. (2006). On the compilation of plan constraints and
preferences. In Proceedings of the 16th International Conference on Automated
Planning and Scheduling, pages 374–377.

[Edelkamp and Jabbar, 2008] Edelkamp, S. and Jabbar, S. (2008). MIPS-XXL: Fea-
turing external shortest path search for sequential optimal plans and external branch-
and-bound for optimal net benefit. Sixth International Planning Competition Book-
let (ICAPS 2008), 143.

[Edelkamp et al., 2006] Edelkamp, S., Jabbar, S., and Naizih, M. (2006). Large-scale
optimal PDDL3 planning with MIPS-XXL. 5th International Planning Competition
Booklet (IPC-2006), pages 28–30.

[El Maghraoui et al., 2006] El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar,
M., and Konstantinou, A. (2006). Model driven provisioning: Bridging the gap be-
tween declarative object models and procedural provisioning tools. In Proceedings
of the ACM/IFIP/USENIX International Conference on Middleware, pages 404–
423. Springer-Verlag New York, Inc.

[Farrell, 2008] Farrell, A. (2008). Model-based orchestration. HP Labs.

[Farrell et al., 2010] Farrell, A., Prakash, S., and Rolia, J. (2010). Behavioral Signa-
tures for Business Service Management in the Cloud. Technical report, HP Labs.

[Fikes and Nilsson, 1971] Fikes, R. and Nilsson, N. (1971). STRIPS: A new approach
to the application of theorem proving to problem solving. Artificial intelligence,
2(3-4):189–208.

[Foundation, 2014a] Foundation, T. A. S. (2014a). Apache Hadoop.
http://hadoop.apache.org. Accessed: 2014-07-01.

[Foundation, 2014b] Foundation, T. A. S. (2014b). Apache Zookeeper.
http://zookeeper.apache.org. Accessed: 2014-07-01.

[Frederic Gittler, 2012] Frederic Gittler (2012). Cloud Computing Security, HP
Labs G-Cloud: A Secure Cloud Infrastructure. http://www.itu.int/en/ITU-
T/studygroups/com17/Documents/tutorials/2012/04-CloudSecurityHPlabs.pdf.
Accessed: 2015-02-15.

[Fritz and McIlraith, 2007] Fritz, C. and McIlraith, S. A. (2007). Monitoring plan
optimality during execution. In Proceedings of the 17th International Conference on

274 Bibliography

Automated Planning and Scheduling (ICAPS), pages 144–151, Providence, Rhode
Island, USA.

[Gerevini et al., 2009] Gerevini, A., Haslum, P., Long, D., Saetti, A., and Dimopoulos,
Y. (2009). Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Artificial Intelligence, 173(5-
6):619–668.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Plan-
ning: theory and practice. Morgan Kaufmann.

[Goldsack et al., 2009] Goldsack, P., Guijarro, J., Loughran, S., Coles, A., Farrell, A.,
Lain, A., Murray, P., and Toft, P. (2009). The SmartFrog configuration management
framework. ACM SIGOPS Operating Systems Review, 43(1):16–25.

[Hagen et al., 2009] Hagen, S., Edwards, N., Wilcock, L., Kirschnick, J., and Rolia,
J. (2009). One is not enough: A hybrid approach for it change planning. Integrated
Management of Systems, Services, Processes and People in IT, pages 56–70.

[Hagen and Kemper, 2010] Hagen, S. and Kemper, A. (2010). Model-Based Planning
for State-Related Changes to Infrastructure and Software as a Service Instances in
Large Data Centers. In Proceedings of the 3rd IEEE International Conference on
Cloud Computing, pages 11–18. IEEE.

[Helmert, 2004] Helmert, M. (2004). A planning heuristic based on causal graph
analysis. In Proceedings of International Conference on Automated Planning and
Scheduling, volume 16, pages 161–170.

[Helmert, 2006] Helmert, M. (2006). The fast downward planning system. Journal of
Artificial Intelligence Research, 26(1):191–246.

[Helmert, 2009] Helmert, M. (2009). Concise finite-domain representations for PDDL
planning tasks. Artificial Intelligence, 173(5-6):503–535.

[Helmert and Domshlak, 2009] Helmert, M. and Domshlak, C. (2009). Landmarks,
critical paths and abstractions: What’s the difference anyway? In Proceedings of
International Conference on Automated Planning and Scheduling.

[Helmert and Geffner, 2008] Helmert, M. and Geffner, H. (2008). Unifying the causal
graph and additive heuristics. In Proceedings of International Conference on Auto-
mated Planning and Scheduling, volume 8.

[Herry and Anderson, 2013] Herry, H. and Anderson, P. (2013). Planning configura-
tion relocation on the bonfire infrastructure. In Proceedings of the CloudCom 2013
Workshop on Using and Building Cloud Testbeds (UNICO). IEEE CloudCom.

[Herry et al., 2011] Herry, H., Anderson, P., and Wickler, G. (2011). Automated plan-
ning for configuration changes. In Proceedings of the 25th Large Installation System
Administration Conference (LISA ’11). Usenix Association.

Bibliography 275

[Hewlett-Packard, 2008] Hewlett-Packard (2008). Cells as a Service.
http://www.hp.com/hpinfo/newsroom/press_kits/2008/cloudresearch/fs_cellsasaservice.pdf.
Accessed: 2015-02-15.

[Hewlett-Packard, 2014] Hewlett-Packard (2014). HP IDOL.
http://www.autonomy.com/products/idol. Accessed: 2014-07-01.

[Hewson et al., 2012] Hewson, J. A., Anderson, P., and Gordon, A. D. (2012). A
declarative approach to automated configuration. In Proceedings of the 2012 LISA
Conference. Usenix Association.

[Hoffmann, 2003] Hoffmann, J. (2003). The Metric-FF planning system: Translating
"ignoring delete lists" to numeric state variables. Journal of Artificial Intelligence
Research, 20(20):291–341.

[Hoffmann and Brafman, 2005] Hoffmann, J. and Brafman, R. (2005). Contingent
planning via heuristic forward search with implicit belief states. In Proceedings of
International Conference on Automated Planning and Scheduling.

[Hoffmann and Nebel, 2001] Hoffmann, J. and Nebel, B. (2001). The FF planning
system: Fast plan generation through heuristic search. Journal of Artificial Intelli-
gence Research, 14(1):253–302.

[Hoffmann et al., 2004] Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered
landmarks in planning. Journal of Artificial Intelligent Research (JAIR), 22:215–
278.

[Howey et al., 2004] Howey, R., Long, D., and Fox, M. (2004). Val: Automatic plan
validation, continuous effects and mixed initiative planning using pddl. In Proceed-
ings of 16th IEEE International Conference on Tools with Artificial Intelligence,
pages 294–301. IEEE.

[HP Labs, 2014] HP Labs (2014). SmartFrog. http://www.smartfrog.org. Accessed:
2014-07-01.

[Hsu and Wah, 2008] Hsu, C. and Wah, B. (2008). The SGPlan planning system in
IPC-6. Sixth International Planning Competition, Sydney, Australia (Sepember
2008).

[Hsu et al., 2006] Hsu, C., Wah, B., Huang, R., and Chen, Y. (2006). New features in
SGPlan for handling preferences and constraints in PDDL3.0. In In Proceedings of
16th International Conference on Automated Planning and Scheduling.

[IBM Corp., 2014] IBM Corp. (2014). Integrated Service Management software, IBM
Tivoli. http://www.ibm.com/software/tivoli. Accessed: 2014-07-01.

[Kavoussanakis et al., 2013] Kavoussanakis, K., Hume, A., Martrat, J., Ragusa, C.,
Gienger, M., Campowsky, K., Van Seghbroeck, G., Vazquez, C., Velayos, C., Git-
tler, F., Inglesant, P., Carella, G., Engen, V., Giertych, M., Landi, G., and Margery,

276 Bibliography

D. (2013). Bonfire: The clouds and services testbed. In Proceedings of IEEE 5th In-
ternational Conference on Cloud Computing Technology and Science (CloudCom),
volume 2, pages 321–326.

[Keller et al., 2004] Keller, A., Hellerstein, J., Wolf, J., Wu, K., and Krishnan, V.
(2004). The CHAMPS system: Change management with planning and scheduling.
In Network Operations and Management Symposium, 2004. NOMS 2004. IEEE/I-
FIP, volume 1, pages 395–408.

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003). The vision of autonomic
computing. Computer, 36(1):41–50.

[Koehler, 1998] Koehler, J. (1998). Solving complex planning tasks through extrac-
tion of subproblems. In Proceedings of the 4th International Conference on Artifi-
cial Intelligence Planning Systems (AIPS-98), pages 62–69. AAAI Press.

[Lascu, 2014] Lascu, T. A. (2014). Automatic deployment of applications in the cloud.
PhD thesis, Universita di Bologna.

[Levanti and Ranganathan, 2009] Levanti, K. and Ranganathan, A. (2009). Planning-
based configuration and management of distributed systems. In Proceedings of
IFIP/IEEE International Symposium on Integrated Network Management, pages
65–72. IEEE.

[Loughran and Toft, 2008] Loughran, S. and Toft, P. (2008). Configuration Descrip-
tion, Deployment and Lifecycle Management Working Group (CDDLM-WG) Final
Report.

[McDermott et al., 1998] McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL-the planning domain
definition language.

[Microsoft Corp., 2014] Microsoft Corp. (2014). Microsoft System Center.
http://www.microsoft.com/en-us/server-cloud/system-center. Accessed: 2014-07-
01.

[Muise et al., 2011] Muise, C., McIlraith, S. A., and Beck, J. C. (2011). Monitoring
the execution of partial-order plans via regression. In Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI-11), pages 1975–1982.

[Opscode Inc., 2014] Opscode Inc. (2014). Chef. http://www.opscode.com/chef. Ac-
cessed: 2014-07-01.

[Porteous et al., 2001] Porteous, J., Sebastia, L., and Hoffmann, J. (2001). On the
extraction, ordering, and usage of landmarks in planning. In Proceedings of the 6th
European Conference on Planning.

[Puppet Labs, 2014] Puppet Labs (2014). Puppet.
http://www.puppetlabs.com/puppet. Accessed: 2014-07-01.

Bibliography 277

[RedHat Inc., 2014] RedHat Inc. (2014). http://fedoraproject.org/wiki/Anaconda/Kickstart.
Accessed: 2014-07-01.

[Reynolds, 1998] Reynolds, J. C. (1998). Theories of Programming Languages. The
Press Syndicate of the University of Cambridge.

[Richter et al., 2008] Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks
revisited. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI-2008. AAAI Press.

[Richter and Westphal, 2010] Richter, S. and Westphal, M. (2010). The LAMA plan-
ner: Guiding cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research, 39(1):127–177.

[Robertson, 2005] Robertson, D. (2005). A lightweight coordination calculus for
agent systems. In Leite, J., Omicini, A., Torroni, P., and Yolum, p., editors, Declar-
ative Agent Languages and Technologies II, volume 3476 of Lecture Notes in Com-
puter Science, pages 183–197. Springer Berlin Heidelberg.

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Artificial intelligence:
a modern approach. Prentice hall.

[Schaefer, 2006] Schaefer, S. (2006). Configuration description, deployment and life-
cycle management – component model. Draft 2006-03-26.

[Schmidt, 1997] Schmidt, D. A. (1997). Denotational Semantics: A Methodology for
Language Development.

[Shah et al., 2007] Shah, J. A., Stedl, J., Williams, B. C., and Robertson, P. (2007). A
fast incremental algorithm for maintaining dispatchability of partially controllable
plans. In Proceedings of International Conference on Automated Planning and
Scheduling, pages 296–303.

[Vaquero et al., 2008] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner,
M. (2008). A break in the clouds: towards a cloud definition. ACM SIGCOMM
Computer Communication Review, 39(1):50–55.

[Veloso et al., 1990] Veloso, M. M., Perez, M. A., and Carbonell, J. G. (1990). Non-
linear planning with parallel resource allocation. In In Proceedings of the DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and Control, pages
207–212. Morgan Kaufmann.

