
Does Disaggregrated Compute Require a New Programming
Paradigm?

Jeremy Singer Colin Perkins Herry Herry

February 27, 2018

We are now in the era of disaggregated compute [5],
where systems are composed of many small, heteroge-
neous, highly distributed nodes. The growing edge [8]
and fog [2] compute trends are special cases of disag-
gregation, for which, respectively, compute-intensive
operations occur at network end-points or in near-edge
servers. Example scenarios include applications where
data acquired at the network edge must be processed
locally, perhaps for privacy reasons, or to ensure low-
latency response times.
Our Federated Raspberry Pi micro-Infrastructure
Testbed (FRµIT) project is building a system composed
of federated set of micro-clusters of single board com-
puters. Each micro-cluster has a set of Raspberry Pi
nodes connected over a LAN, with an internet uplink.
An explicit aim for the FRµIT system is to be as decen-
tralized as possible, i.e. services should operate using
peer-to-peer (p2p) architectural design patterns [9].
Our current framework is semi-distributed but we are
moving to a fully distributed solution.
We aim to build a toolchain to enable the develop-
ment and deployment of composite, distributed appli-
cations that run across the whole federated system,
or possibly across an arbitrary subset of the nodes.
Current state of the art is to deploy single-node exe-
cutables inside containers, based on Docker or simi-
lar frameworks. A whole system is configured using
a higher level orchestration framework, perhaps Ku-
bernetes. The glaring problem with this approach is
the requirement to use multiple languages. The low-
level, single-node programs are written in conventional
programming languages. The containers have associ-
ated metadata, which can be queried and updated us-
ing a domain-specific language. Wide-area configura-
tion and deployment is expressed in another domain-
specific language, typically a dialect of YAML, and ap-
plied with a sequence of commands.
Our research investigates whether it is possible to
adopt a unified approach to distributed system devel-
opment on FRµIT style platforms. The key question we
intend to address is, are any existing programming lan-
guages appropriate for this use case?
Languages based on theoretical process calculi, in-
cluding Occam [7] (from CSP) and Pict [6] (from π-
calculus), might be appropriate. These incorporate
the notions of parallelism, message passing, and can
be extended to model process mobility—for instance,
Nomadic Pict [10] is described as a ‘wide area pro-
gramming language’ which sounds like our use case.
The key issue is that we cannot expect all nodes to be
reachable at all times. Nodes may drop off temporarily

(perhaps due to power or network problems) or perma-
nently (perhaps due to hardware failure).
Modern concurrent systems incorporate runtime
notions of failure-tolerance, such as the actor-
based Erlang system [1] and the task-parallel
Hadoop/MapReduce framework [4]. We note
that other programming languages build on these
archetypes, such as Elixir (for Erlang) and Spark (for
Hadoop).
More specialized languages include Ambient Talk [3]
which targets sensor network deployments. It is based
on p2p mobile architecture and has explicit network
failure support.
We expect that a combination of these properties will
be required for our new scenario. Effectively, we will
need a toolchain that meets the following set of high-
level requirements:
1. a unified language to express computation (data
processing), communication (message passing) and
configuration (task deployment).

2. built-in support for delay tolerance and failure tol-
erance

3. coverage of heterogeneous device nodes across the
system

4. fundamental support for a fully decentralized archi-
tecture

5. expression of resource constraints and capabilities
associated with each node, with associated schedul-
ing support

6. facilities for compositional development of large ap-
plications

References
[1] J. Armstrong. A history of erlang. In Proceedings of the Third ACM SIG-

PLAN Conference on History of Programming Languages, pages 6–1–6–
26, 2007.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role
in the internet of things. In Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, pages 13–16, 2012.

[3] T. V. Cutsem, E. G. Boix, C. Scholliers, A. L. Carreton, D. Harnie, K. Pinte,
and W. D. Meuter. Ambienttalk: programming responsive mobile peer-to-
peer applications with actors. Computer Languages, Systems & Struc-
tures, 40(3):112–136, 2014.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] H. Meyer, J. C. Sancho, J. V. Quiroga, F. Zyulkyarov, D. Roca, and M. Ne-
mirovsky. Disaggregated computing. an evaluation of current trends for
datacentres. Procedia Computer Science, 108:685–694, 2017.

[6] B. C. Pierce and D. N. Turner. Pict: a programming language based on the
pi-calculus. In Proof, language, and interaction, pages 455–494, 2000.

[7] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. The-
oretical Computer Science, 60(2):177–229, 1988.

[8] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, Jan 2017.

[9] J. Singer, H. Herry, P. J. Basford, W. Hajji, C. S. Perkins, F. P. Tso,
D. Pezaros, R. D. Mullins, E. Yoneki, S. J. Cox, and S. J. Johnston. Next gen-
eration single board clusters (demo), 2018. to appear in Proceedings of
the 2018 IEEE/IFIP Network Operations and Management Symposium.

[10] P. T. Wojciechowski and P. Sewell. Nomadic pict: Language and infras-
tructure design for mobile agents. IEEE Concurrency, 8(2):42–52, 2000.

1


